首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   11篇
  291篇
  2023年   1篇
  2022年   7篇
  2021年   17篇
  2020年   11篇
  2019年   6篇
  2018年   16篇
  2017年   2篇
  2016年   9篇
  2015年   8篇
  2014年   10篇
  2013年   8篇
  2012年   15篇
  2011年   11篇
  2010年   4篇
  2009年   10篇
  2008年   11篇
  2007年   16篇
  2006年   13篇
  2005年   10篇
  2004年   3篇
  2003年   6篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1982年   1篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   7篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
排序方式: 共有291条查询结果,搜索用时 0 毫秒
61.
Summary Bacteria able to secrete proteins efficiently into the growth medium occur relatively rarely amongst Gram-negative species. However, the increasing technological interest in protein secretion has focused attention on this process. We have demonstrated that Myxococcus xanthus actively secretes protein. The number of proteins secreted is quite large, but the total amount is strictly regulated and remains constant under conditions that change the specific activities of some of the secreted enzymes. Tn5-insertion mutants were obtained which were impaired in what seems to be the control system for protein secretion. Two of the mutants displayed increased levels of extracellular protein.  相似文献   
62.
Summary The gram-negative soil bacterium Myxococcus xanthus was immobilized by entrapping into carrageenan gel beads. Unexpectedly, the growth rate was hardly increased, and the released free cell concentration remained low. However, extracellular proteolytic and bacteriolytic activities produced in the medium or inside the beads was greatly increased and (or) stabilized as compared to the control. These properties might be quite useful in view of using Myxococcus xanthus as a cloning vehicle for secretion of foreign proteins.  相似文献   
63.
N‐acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant‐specific Lysin Motif Receptor‐Like Kinases (LysM‐RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo‐chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen‐fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM‐RLK LYR3 (MtLYR3) as a specific LCO‐binding protein. We also showed that the absence of LCO binding to LYR3 of the non‐mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site‐directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3‐LysM3 by those of MtLYR3‐LysM3 allowed the recovery of high‐affinity LCO binding in experimental radioligand‐binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern.  相似文献   
64.
BackgroundThe food industry uses artificial sweeteners in a wide range of foods and beverages as alternatives to added sugars, for which deleterious effects on several chronic diseases are now well established. The safety of these food additives is debated, with conflicting findings regarding their role in the aetiology of various diseases. In particular, their carcinogenicity has been suggested by several experimental studies, but robust epidemiological evidence is lacking. Thus, our objective was to investigate the associations between artificial sweetener intakes (total from all dietary sources, and most frequently consumed ones: aspartame [E951], acesulfame-K [E950], and sucralose [E955]) and cancer risk (overall and by site).Methods and findingsOverall, 102,865 adults from the French population-based cohort NutriNet-Santé (2009–2021) were included (median follow-up time = 7.8 years). Dietary intakes and consumption of sweeteners were obtained by repeated 24-hour dietary records including brand names of industrial products. Associations between sweeteners and cancer incidence were assessed by Cox proportional hazards models, adjusted for age, sex, education, physical activity, smoking, body mass index, height, weight gain during follow-up, diabetes, family history of cancer, number of 24-hour dietary records, and baseline intakes of energy, alcohol, sodium, saturated fatty acids, fibre, sugar, fruit and vegetables, whole-grain foods, and dairy products. Compared to non-consumers, higher consumers of total artificial sweeteners (i.e., above the median exposure in consumers) had higher risk of overall cancer (n = 3,358 cases, hazard ratio [HR] = 1.13 [95% CI 1.03 to 1.25], P-trend = 0.002). In particular, aspartame (HR = 1.15 [95% CI 1.03 to 1.28], P = 0.002) and acesulfame-K (HR = 1.13 [95% CI 1.01 to 1.26], P = 0.007) were associated with increased cancer risk. Higher risks were also observed for breast cancer (n = 979 cases, HR = 1.22 [95% CI 1.01 to 1.48], P = 0.036, for aspartame) and obesity-related cancers (n = 2,023 cases, HR = 1.13 [95% CI 1.00 to 1.28], P = 0.036, for total artificial sweeteners, and HR = 1.15 [95% CI 1.01 to 1.32], P = 0.026, for aspartame). Limitations of this study include potential selection bias, residual confounding, and reverse causality, though sensitivity analyses were performed to address these concerns.ConclusionsIn this large cohort study, artificial sweeteners (especially aspartame and acesulfame-K), which are used in many food and beverage brands worldwide, were associated with increased cancer risk. These findings provide important and novel insights for the ongoing re-evaluation of food additive sweeteners by the European Food Safety Authority and other health agencies globally.Trial registrationClinicalTrials.gov NCT03335644.

Charlotte Debras and colleagues investigate investigate associations between artificial sweetener intakes and cancer risk in adults from a French population-based cohort.  相似文献   
65.
When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37°C to 4°C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12–20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.  相似文献   
66.
After voluntary hyperventilation, normal humans do not develop a significant ventilatory depression despite low arterial CO2 tension, a phenomenon attributed to activation of a brain stem mechanism referred to as the "afterdischarge." Afterdischarge is one of the factors that promote ventilatory stability. It is not known whether physiological stimuli, such as hypoxia, are able to activate the afterdischarge in humans. To test this, breath-by-breath ventilation (VI) was measured in nine young adults during and immediately after a brief period (35-51 s) of acute hypoxia (end-tidal O2 tension 55 Torr). Hypoxia was terminated by switching to 100% O2 (end-tidal O2 tension of first posthypoxic breath greater than 100 Torr). Brief hypoxia increased VI and decreased end-tidal CO2 tension. In all subjects, termination of hypoxia was followed by a gradual ventilatory decay; hyperoxic VI remained higher than the normoxic baseline for several breaths and, despite the negative chemical stimulus of hyperoxia and hypocapnia, reached a new steady state without an apparent undershoot. We conclude that brief hypoxia is able to activate the afterdischarge mechanism in conscious humans. This contrasts sharply with the ventilatory undershoot that follows relief of sustained hypoxia, thereby suggesting that sustained hypoxia inactivates the afterdischarge mechanism. The present findings are of relevance to the pathogenesis of periodic breathing in a hypoxic environment. Furthermore, brief exposure to hypoxia might be useful for evaluation of the role of afterdischarge in other disorders associated with unstable breathing.  相似文献   
67.
This paper reports the biotransformation of carvone, limonene, β-pinene, thymol, and linalool using whole-cell-immobilized microalgal strains isolated from paddy fields of Iran. The strains was recognized by morphological characterization and assigned according to amplified 16S/18S rRNA genes by PCR. Ten unialgal strains including Chlorella, Oocystis, Chlamydomonas, and Synechococcus were immobilized in calcium alginate beads. After a 24-h incubation with substrates, characterization and identification of biotransformation products were done by GC/MS. None of the isolated immobilized microalgae converted β-pinene. In contrast, most of these strains biotransformed carvone and limonene to the related compounds. Some strains only reduced the C = C double bond to yield the dihydrocarvone isomers while others reduced the ketone to give the dihydrocarveol. The transformation ratio showed that Oocystis sp. MCCS 033 and Synechococcus sp. MCCS 035 produced dihydrocarvone isomers with the highest efficiency. Furthermore, limonene was converted into a mixture of five corresponding products and the maximum yield was 52.1% for carvone, the bioconverted product. Only one strain, Synechococcus sp. MCCS 034, oxidized thymol, and the product obtained from thymol was thymoquinone. Also, linalooloxide isomers and dihydrolinalool were obtained from linalool, and finally dihydrolinalool was the main product. These results showed a novel conversion pathway of linalool-forming dihydrolinalool.  相似文献   
68.
69.
70.
Treatment of male mice with the redox cycling compounds nitrofurantoin, paraquat, diquat or menadione failed to elicit in vivo lipid peroxidation as evidenced by ethane exhalation. The first three led to an enhanced ethane production, however, when the animals were pretreated with a low dose of Fe2+. While GSH-depletion by phorone pretreatment alone had no influence on the in vivo lipid peroxidation as evidenced by ethane expiration in the presence of either compound, the combined treatment with phorone, Fe2+ and nitrofurantoin, paraquat or diquat led to a further enhancement of ethane exhalation. These results indicate that redox cycling compounds do not initiate lipid peroxidation by themselves, but are well capable of stimulating the iron-induced LPO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号