首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1095篇
  免费   73篇
  2023年   4篇
  2022年   8篇
  2021年   15篇
  2020年   8篇
  2019年   14篇
  2018年   25篇
  2017年   26篇
  2016年   38篇
  2015年   55篇
  2014年   86篇
  2013年   79篇
  2012年   107篇
  2011年   95篇
  2010年   85篇
  2009年   54篇
  2008年   79篇
  2007年   66篇
  2006年   60篇
  2005年   55篇
  2004年   50篇
  2003年   40篇
  2002年   31篇
  2001年   16篇
  2000年   12篇
  1999年   6篇
  1998年   13篇
  1997年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有1168条查询结果,搜索用时 15 毫秒
51.
Embryogenic tissue was initiated using LM, LP and MS media from open-pollinated immature embryos of Larix leptolepis. The initiation frequency varied with collection dates. The highest frequencies of embryogenic tissue initiation (60, 67 and 59% on LM, LP and MS media, respectively) were observed from cones collected on July 30. At this time, all the excised embryos were at the cotyledonary stage. ABA over a wide concentration and length of exposure range did not promote maturation, but was beneficial in reducing precocious germination. Of over 400 plants regenerated, 72 were transplanted into soil mixtures and to date, 69 of these (95%) have survived. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
52.
Pleiotrophin (PTN) is a secreted heparin‐binding protein that is involved in various biological functions of cell growth and differentiation. Little is known about the effects of PTN on the melanocyte function and skin pigmentation. In this study, we investigated whether PTN would affect melanogenesis. PTN was expressed in melanocytes and fibroblasts of human skin. Transfection studies revealed that PTN decreased melanogenesis, probably through MITF degradation via Erk1/2 activation in melanocytes. The inhibitory action of PTN in pigmentation was further confirmed in ex vivo cultured skin and in the melanocytes cocultured with fibroblasts. These findings suggest that PTN is a crucial factor for the regulation of melanogenesis in the skin.  相似文献   
53.
HMGB1 (high mobility group box 1), a ubiquitously expressed DNA-binding nucleoprotein, has not only been attributed with important functions in the regulation of gene expression but is thought to function as an important damage-associated molecular pattern in the extracellular space. Recently, conditional Hmgb1 deletion strategies have been employed to overcome the perinatal mortality of global Hmgb1 deletion and to understand HMGB1 functions under disease conditions. From these studies, it has become evident that HMGB1 is not required for normal organ function. However, the different conditional ablation strategies have yielded contradictory results in some disease models. With nearly complete recombination in all transgenic mouse models, the main reason for opposite results is likely to lie within different targeting strategies. In summary, different targeting strategies need to be taken into account when interpreting HMGB1 functions, and further efforts need to be undertaken to compare these models side by side.We appreciate the thoughtful analysis on HMGB1-dependent and -independent autophagy by Sun and Tang.1 However, we disagree with several statements in this review. Sun and Tang write “Mice with hepatocyte-specific deletion of Hmgb1 from Robert Schwabe''s lab are not complete conditional knockout mice; the protein level of HMGB1 in the liver is decreased by about 70%,” as well as “a major difference between Robert Schwabe''s engineered HMGB1 mice and other groups is the tissue-level expression of HMGB1 after knockout.”1We would like to point out that livers are not solely composed of hepatocytes and that albumin-Cre mediated deletion of target genes in the liver cannot result in complete loss of hepatic mRNA or protein of target genes due to the presence of unrecombined nonparenchymal cells, unless the target gene is exclusively expressed in hepatocytes and/or cholangiocytes. The reduction of hepatic HMGB1 in our studies—reaching 90% and 72% at the mRNA and protein level, respectively—is precisely at the expected level for this conditional strategy, and similar to other studies that employed albumin-Cre for hepatocyte-specific knockout of other target genes.2-5 Hepatocytes account only for approximately 52% of cells in the liver, with other cell types including Kupffer cells (∼18% of liver cells), hepatic stellate cells (˜8% of liver cells), endothelial cells (∼22% cells of liver cells) and cholangiocytes (<1 % of liver cells) contributing to the remainder.6 Accordingly, albumin-Cre-mediated reduction of mRNA and protein levels of target genes (i.e., Hmgb1 and HMGB1 in our study) in the liver cannot exceed the amount of mRNA and protein expressed by hepatocytes and cholangiocytes (which is typically about 70–90%,2-5 due to higher mRNA and protein levels in hepatocytes than in other hepatic cell types). The high efficacy of our conditional approach is best demonstrated by almost complete loss of HMGB1 expression in the hepatocellular compartment of albumin-Cre mice—as evidenced by loss of HMGB1 expression in all HNF4α-positive cells and in isolated primary hepatocytes—whereas HMGB1 expression is retained in nonparenchymal cells, as demonstrated by costaining for Kupffer cell marker F4/80, endothelial cell marker endomucin, and hepatic stellate cell marker desmin.7,8 The nearly perfect recombination rate in our mice was further confirmed by experiments that employed Mx1Cre for Hmgb1 deletion, which resulted in almost complete loss of hepatic Hmgb1 mRNA and HMGB1 protein.7,8 Moreover, our transgenic mice show early postnatal mortality when bred with a germline Cre deleter,7 thus reproducing the phenotype of the global HMGB1 knockout.9In summary, our transgenic mouse model results in nearly perfect recombination efficiency with virtually complete loss of Hmgb1 mRNA and HMGB1 protein in all targeted cell types, and constitutes a valid tool for the assessment of HMGB1 functions in vivo. Findings from this model need to be taken into account for proper interpretation of the role of HMGB1 in the normal and diseased liver, and cannot be interpreted as a result of incomplete deletion efficiency. Hence, differences in targeting strategies (exons 2–4 by our approach, exons 2–3 in mice from Tang and colleagues) are likely to explain opposite findings, e.g. improvement of ischemia-reperfusion injury in our hands, but aggravation of liver damage in the study by Huang et al.8,10 Further analysis needs to be performed to determine whether ablation of exons 2–3 versus exons 2–4 leads to complete loss of HMGB1 function.  相似文献   
54.
Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination.  相似文献   
55.
Overexpression of p53 is the most frequent genetic alteration in breast cancer. Recently, many studies have shown that the expression of mutant p53 differs for each subtype of breast cancer and is associated with different prognoses. In this study, we aimed to determine the suitable cut-off value to predict the clinical outcome of p53 overexpression and its usefulness as a prognostic factor in each subtype of breast cancer, especially in luminal A breast cancer. Approval was granted by the Institutional Review Board of Samsung Medical Center. We analyzed a total of 7,739 patients who were surgically treated for invasive breast cancer at Samsung Medical Center between Dec 1995 and Apr 2013. Luminal A subtype was defined as ER&PR + and HER2- and was further subclassified according to Ki-67 and p53 expression as follows: luminal A (Ki-67-,p53-), luminal A (Ki-67+, p53-), luminal A (Ki-67 -, p53+) and luminal A (Ki-67+, p53+). Low-risk luminal A subtype was defined as negative for both Ki-67 and p53 (luminal A [ki-67-, p53-]), and others subtypes were considered to be high-risk luminal A breast cancer. A cut-off value of 10% for p53 was a good predictor of clinical outcome in all patients and luminal A breast cancer patients. The prognostic role of p53 overexpression for OS and DFS was only significant in luminal A subtype. The combination of p53 and Ki-67 has been shown to have the best predictive power as calculated by the area under curve (AUC), especially for long-term overall survival. In this study, we have shown that overexpression of p53 and Ki-67 could be used to discriminate low-risk luminal A subtype in breast cancer. Therefore, using the combination of p53 and Ki-67 expression in discriminating low-risk luminal A breast cancer may improve the prognostic power and provide the greatest clinical utility.  相似文献   
56.
Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ) and the aggregated proteins that cause Alzheimer’s disease (AD). We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ) by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1–42, protein levels of beclin-1, autophagy-related protein5 (Atg5), and SIRT1 decreased significantly. Pretreatment with cilostazol (10–30 μM) or resveratrol (20 μM) prevented these Aβ1–42 evoked suppressions. LC3-II (a marker of mammalian autophagy) levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation) were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition). Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion). After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein), cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability.  相似文献   
57.
Osteoporosis-related fractures are one of the complications of Graves’ disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves’ disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves’ disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves’ disease.  相似文献   
58.
Trichomoniasis caused by the parasitic protozoan Trichomonas vaginalis is the most common sexually transmitted disease in the world. Dendritic cells are antigen presenting cells that initiate immune responses by directing the activation and differentiation of naïve T cells. In this study, we analyzed the effect of Trichomonas vaginalis-derived Secretory Products on the differentiation and function of dendritic cells. Differentiation of bone marrow-derived dendritic cells in the presence of T. vaginalis-derived Secretory Products resulted in inhibition of lipopolysaccharide-induced maturation of dendritic cells, down-regulation of IL-12, and up-regulation of IL-10. The protein components of T. vaginalis-derived Secretory Products were shown to be responsible for altered function of bone marrow-derived dendritic cells. Chromatin immunoprecipitation assay demonstrated that IL-12 expression was regulated at the chromatin level in T. vaginalis-derived Secretory Productstreated dendritic cells. Our results demonstrated that T. vaginalis-derived Secretory Products modulate the maturation and cytokine production of dendritic cells leading to immune tolerance. [BMB Reports 2015; 48(2): 103-108]  相似文献   
59.
FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI. [BMB Reports 2015; 48(11): 618-623]  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号