首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1842篇
  免费   107篇
  国内免费   11篇
  2023年   10篇
  2022年   32篇
  2021年   64篇
  2020年   28篇
  2019年   37篇
  2018年   44篇
  2017年   50篇
  2016年   52篇
  2015年   92篇
  2014年   123篇
  2013年   132篇
  2012年   116篇
  2011年   133篇
  2010年   97篇
  2009年   65篇
  2008年   107篇
  2007年   91篇
  2006年   74篇
  2005年   91篇
  2004年   64篇
  2003年   65篇
  2002年   52篇
  2001年   24篇
  2000年   19篇
  1999年   23篇
  1998年   16篇
  1997年   6篇
  1996年   8篇
  1995年   10篇
  1994年   10篇
  1993年   10篇
  1992年   23篇
  1991年   18篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   11篇
  1985年   10篇
  1983年   6篇
  1982年   9篇
  1980年   9篇
  1977年   5篇
  1976年   6篇
  1974年   11篇
  1973年   11篇
  1972年   5篇
  1971年   5篇
  1970年   10篇
  1969年   5篇
排序方式: 共有1960条查询结果,搜索用时 15 毫秒
121.

Introduction

The microeconomic impact of surgery for congenital heart disease is unexplored, particularly in resource limited environments. We sought to understand the direct and indirect costs related to congenital heart surgery and its impact on Indian households from a family perspective.

Methods

Baseline and first follow-up data of 644 consecutive children admitted for surgery for congenital heart disease (March 2013 – July 2014) in a tertiary referral hospital in Central Kerala, South India was collected prospectivelyfrom parents through questionnaires using a semi-structured interview schedule.

Results

The median age was 8.2 months (IQR: 3.0– 36.0 months). Most families belonged to upper middle (43.0%) and lower middle (35.7%) socioeconomic class. Only 3.9% of families had some form of health insurance. The median expense for the admission and surgery was INR 201898 (IQR: 163287–266139) [I$ 11989 (IQR: 9696–15804)], which was 0.93 (IQR: 0.52–1.49) times the annual family income of affected patients. Median loss of man-days was 35 (IQR: 24–50) and job-days was 15 (IQR: 11–24). Surgical risk category and hospital stay duration significantly predicted higher costs. One in two families reported overwhelming to high financial stress during admission period for surgery. Approximately half of the families borrowed money during the follow up period after surgery.

Conclusion

Surgery for congenital heart disease results in significant financial burden for majority of families studied. Efforts should be directed at further reductions in treatment costs without compromising the quality of care together with generating financial support for affected families.  相似文献   
122.
Tools for estimating population structure from genetic data are now used in a wide variety of applications in population genetics. However, inferring population structure in large modern data sets imposes severe computational challenges. Here, we develop efficient algorithms for approximate inference of the model underlying the STRUCTURE program using a variational Bayesian framework. Variational methods pose the problem of computing relevant posterior distributions as an optimization problem, allowing us to build on recent advances in optimization theory to develop fast inference tools. In addition, we propose useful heuristic scores to identify the number of populations represented in a data set and a new hierarchical prior to detect weak population structure in the data. We test the variational algorithms on simulated data and illustrate using genotype data from the CEPH–Human Genome Diversity Panel. The variational algorithms are almost two orders of magnitude faster than STRUCTURE and achieve accuracies comparable to those of ADMIXTURE. Furthermore, our results show that the heuristic scores for choosing model complexity provide a reasonable range of values for the number of populations represented in the data, with minimal bias toward detecting structure when it is very weak. Our algorithm, fastSTRUCTURE, is freely available online at http://pritchardlab.stanford.edu/structure.html.  相似文献   
123.
124.
3-Hydroxypropionic acid (3-HP), a versatile and valuable platform chemical, has diverse industrial applications; but its biological production from glycerol is often limited by the capability of the enzyme aldehyde dehydrogenase (ALDH) to convert an intermediary compound, 3-hydroxypropionaldehyde (3-HPA), to 3-HP. In this study, we report a new ALDH, PuuC, from Klebsiella pneumoniae DSM 2026, that efficiently converts 3-HPA to 3-HP. The identified gene puuC was cloned, expressed in Escherichia coli, purified, and characterized for its properties. The recombinant enzyme with a molecular weight of 53.8 kDa exhibited broad substrate specificity for various aliphatic aldehydes, especially C2–C5 aldehydes. NAD+ was the preferred coenzyme for the oxidation of most aliphatic and aromatic aldehydes tested. The optimum pH and temperature for PuuC activity were pH 8.0 and 45°C. The K m values for 3-HPA and NAD+ were 0.48 and 0.09 mM, respectively. The activity of PuuC was enhanced in the presence of reducing agents such as 2-mercaptoethanol or dithiothreitol, while several metal ions, particularly Hg2+, Ag+, and Cu2+ inhibited its activity. The predicted structure of PuuC indicated the presence of K191 and E194 in close proximity to the glycine motif, suggesting that PuuC belongs to class 2 ALDHs.  相似文献   
125.
126.
Interspecific potato somatic hybrids between Solanum tuberosum L. (di)haploid C-13 and 1 endosperm balance number non-tuberous wild species S. etuberosum Lindl. were produced by protoplasts electrofusion. The objective was to transfer virus resistance from this wild species into the cultivated potatoes. Post-fusion products were cultured in VKM medium followed by regeneration of calli in MS13 K medium at 20°C under a 16-h photoperiod, and regenerants were multiplied on MS medium. Twenty-one somatic hybrids were confirmed by RAPD, SSR and cytoplasm (chloroplast/mitochondria) type analysis possessing species-specific diagnostic bands of corresponding parents. Tetraploid nature of these somatic hybrids was determined through flow cytometry analysis. Somatic hybrids showed intermediate phenotypes (plant, leaves and floral morphology) to their parents in glass-house grown plants. All the somatic hybrids were male-fertile. ELISA assay of somatic hybrids after artificial inoculation of Potato virus Y (PVY) infection reveals high PVY resistance.  相似文献   
127.
Vegetative insecticidal protein (Vip3A) is synthesized as an extracellular insecticidal toxin by certain strains of Bacillus thuringiensis. Vip3A is active against several lepidopteran pests of crops. Polyphagous pest, Spodoptera frugiperda, and its cell line Sf21 are sensitive for lyses to Vip3A. Screening of cDNA library prepared from Sf21 cells through yeast two-hybrid system with Vip3A as bait identified ribosomal protein S2 as a toxicity-mediating interacting partner protein. The Vip3A-ribosomal-S2 protein interaction was validated by in vitro pulldown assays and by RNA interference-induced knockdown experiments. Knockdown of expression of S2 protein in Sf21 cells resulted in reduced toxicity of the Vip3A protein. These observations were further extended to adult fifth-instar larvae of Spodoptera litura. Knockdown of S2 expression by injecting corresponding double-stranded RNA resulted in reduced mortality of larvae to Vip3A toxin. Intracellular visualization of S2 protein and Vip3A through confocal microscopy revealed their interaction and localization in cytoplasm and surface of Sf21 cells.Insecticidal proteins produced by strains of Bacillus thuringiensis can broadly be classified into two major categories based on their site of accumulation. Category I consist of proteins that are deposited as crystals in sporangia and are referred to as insecticidal crystalline proteins (ICPs). The second category consists of recently described group of insecticidal proteins, called vegetative insecticidal proteins (8). These proteins are synthesized during the vegetative growth of Bacillus cells and are secreted into the culture medium. Irrespective of the site of accumulation of insecticidal proteins, their ingestion by susceptible insect larvae leads to disruption and lysis of epithelial tissue from the midgut, resulting in larval death (12). The mechanism of lysis of gut epithelial tissue by ICPs has been investigated in detail in several insects (16). Ingestion of ICPs triggers a sequence of biochemical cascade that involves its solubilization and subsequent activation by gut proteases. The activated toxin interacts with specific receptors located at the midgut epithelial tissue. In this sequence of events, the interaction with the receptor is the most significant event since subsequent to interaction, pore formation is initialized, and that leads to lysis of epithelial cells. The identification and characterization of receptors from various insect larvae has led to the identification of following molecules as receptor to ICPs, such as cadherinlike protein (21), glycosyl phosphatidylinositol (GPI)-anchored aminopeptidase N (APN) (1, 9, 11, 17, 19, 20), a GPI-anchored alkaline phosphatase (10, 14), and a 270-kDa glycoconjugate (see references 2, 7, 9, and 16 and references therein for an extensive list of receptors). In addition, certain glycopeptides have been identified as lysis-initiating receptor molecules. Although there is extensive information about the receptor-toxin interaction for ICPs, negligible work has been done toward the identification of receptors to vegetative insecticidal proteins. The ultrastructural changes induced at the midgut epithelial tissue, upon ingestion of ICPs or Vip3As, are common (12). Both ICPs and Vip3As interact at the epithelial layer of midgut, enlarging the affected cells due to osmotic imbalance and eventually causing lysis. In spite of inflicting nearly identical structural damage, the interacting receptor for the Vip3A is not identical (12). In fact, the receptor to Vip3As has not yet been characterized.Our group has been working on the identification, cloning, and evaluation of vegetative insecticidal proteins from strains of B. thuringiensis held in our collection. We have characterized the Vip3A (EMBL accession no. Y17158) class of protein and evaluated its toxicity profile (2, 8, 18). Vip3A is active against larvae of Spodoptera litura, among several other lepidopteran pests. In a parallel series of experiments, we identified APN as a receptor to the B. thuringiensis protein Cry1C in S. litura. The heterologously expressed APN did not interact with Vip3A, suggesting that Vip3A toxicity in this insect is not through interaction with APN (1). Our preliminary results on the toxicity of Vip3A revealed that purified insecticidal protein could lyse Sf21 cells, suggesting the presence of receptors in the insect cell line. In the present study, we identified the Vip3A interacting protein in Sf21 cells and the larvae of S. litura. The specificity of the interaction has been examined by a combination of ex vivo and in vitro assays. These assays identified ribosomal S2 protein as the interacting partner of Vip3A. The functional significance of S2-Vip3A protein interaction was examined by monitoring the reduction in Vip3A toxicity in Sf21 cells and larvae of S. litura by the RNA interference-induced knockdown of S2 protein. The results of these experiments are discussed in the context of colocalization of the S2-Vip3A protein interacting complex by confocal microscopy.  相似文献   
128.
A thin, profusely branched, fast growing hairy root line of Panax quinquefolium (American ginseng) was established by co-culturing epicotyl explants with a wild type strain of Agrobacterium rhizogenes. The transformed roots grew by over 10-fold from the initial inoculum within 8 weeks. The crude ginsenosides content in the roots was about 0.2 g/g dry wt level up to the 10th week of culture. Ginsenosides Rb2, Rd, Re, Rf and Rg1 constituted 47–49% of the crude saponin fraction between 6 and 8 weeks of growth whereas, Rc ginsenoside was accumulated only after 9th weeks when the biomass started receding. PCR amplification analysis of the hairy roots confirmed their transgenic nature by showing the presence of Ri-TL DNA with rolA, rolB and rolC genes in their genome.  相似文献   
129.
The number of genetically distinct individuals within a community is a key component of biodiversity and yet its impact at different trophic levels, especially upon the diversity of functionally important soil microorganisms is poorly understood. Here, we test the hypothesis that plant communities that are genetically impoverished will support fewer species of root-associated fungi. We used established grassland mesocosms comprising non-sterile natural soil supporting defined communities of 11 clonally-propagated plant species. Half of the mesocosms contained one genotype per species and half 16 genotypes per species. After 8 years growth, we sampled roots from the mesocosms and measured root-associated fungal richness and diversity using terminal restriction fragment length polymorphism (T-RFLP). Contrary to our hypothesis, we found that the roots of genetically impoverished communities contained more species of fungi and had greater diversity compared to genetically rich communities. Analysis of the plant species composition of the mesocosm communities indicated that genotypic diversity affects root-fungal diversity indirectly through its influence upon plant species diversity. Our findings highlight the need to include feedbacks with plant intraspecific diversity into existing models describing the maintenance of soil biodiversity.  相似文献   
130.
Khan SH  Ahmad N  Ahmad F  Kumar R 《IUBMB life》2010,62(12):891-895
Osmolytes are naturally occurring organic compounds, which represent different chemical classes including amino acids, methylamines, and polyols. By accumulating high concentrations of osmolytes, organisms adapt to perturbations that can cause structural changes in their cellular proteins. Osmolytes shift equilibrium toward natively-folded conformations by raising the free energy of the unfolded state. As osmolytes predominantly affect the protein backbone, the balance between osmolyte-backbone interactions and amino acid side chain-solvent interactions determines protein folding. Abnormal cell volume regulation significantly contributes to the pathophysiology of several disorders, and cells respond to these changes by importing, exporting, or synthesizing osmolytes to maintain volume homeostasis. In recent years, it has become quite evident that cells regulate many biological processes such as protein folding, protein disaggregation, and protein-protein interactions via accumulation of specific osmolytes. Many genetic diseases are attributed to the problems associated with protein misfolding/aggregation, and it has been shown that certain osmolytes can protect these proteins from misfolding. Thus, osmolytes can be utilized as therapeutic targets for such diseases. In this review article, we discuss the role of naturally occurring osmolytes in protein stability, underlying mechanisms, and their potential use as therapeutic molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号