首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3752篇
  免费   361篇
  国内免费   253篇
  2024年   8篇
  2023年   40篇
  2022年   104篇
  2021年   160篇
  2020年   128篇
  2019年   145篇
  2018年   153篇
  2017年   110篇
  2016年   153篇
  2015年   239篇
  2014年   274篇
  2013年   257篇
  2012年   359篇
  2011年   280篇
  2010年   183篇
  2009年   146篇
  2008年   165篇
  2007年   168篇
  2006年   148篇
  2005年   137篇
  2004年   121篇
  2003年   125篇
  2002年   133篇
  2001年   98篇
  2000年   84篇
  1999年   77篇
  1998年   47篇
  1997年   41篇
  1996年   34篇
  1995年   29篇
  1994年   25篇
  1993年   21篇
  1992年   24篇
  1991年   25篇
  1990年   20篇
  1989年   12篇
  1988年   12篇
  1987年   7篇
  1986年   4篇
  1985年   13篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1977年   8篇
  1976年   9篇
  1975年   4篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1952年   2篇
排序方式: 共有4366条查询结果,搜索用时 15 毫秒
31.
32.
33.
db—cAMP对转化细胞钙调素基因表达与细胞骨架的影响   总被引:5,自引:0,他引:5  
We have demonstrated that the distribution of microtubules (MT), microfilaments (MF) and fibronectin (FN) were diminished, while the gene expression of the calmodulin and c-fos enhanced in the transformed C3 H10 T1/2 cells. After treatment with 1 mM db-cAMP for 1 hr. and 2 hrs., there was an early and rapidly reduced in gene expression of calmodulin and c-fos respectively. After db-cAMP treatment for 4-5 days, the number of Capping cells of ConA binding decreased significantly and the cell surface microvilli decreased also. The growth of treated cells was inhibited markedly. By using 4F1 cDNA probe, which is preferentially expressed in G1 phase, we have found that the db-cAMP treated cells were accumulated at G1 phase. Of particular interest is the fact that the distribution of microtubules, microfilaments and fibronectin were recovered after treatment with 1 mM db-cAMP for 6 days. It is suggested that the inhibition of proliferation, alteration of phenotype and recovery of cytoskeleton in transformed cells after treatment with db-cAMP are related to the inhibition of gene expression of calmodulin.  相似文献   
34.
Nicotinamide adenine dinucleotide-linked malate dehydrogenase has been purified from Pseudomonas testosteroni (ATCC 11996). The purification represents over 450-fold increase in specific activity. The amino acid composition of the enzyme was determined and found to be quite different from the composition of the malate dehydrogenases from animal sources as well as from Escherichia coli. Despite this difference, however, the data show that the enzymatic properties of the purified enzyme are remarkably similar to those of other malate dehydrogenases that have been previously studied. The Pseudomonas enzyme has a molecular weight of 74,000 and consists of two subunits of identical size. In addition to L-malate, the enzyme slowly oxidizes other four-carbon dicarboylates having an alpha-hydroxyl group of S configuration such as meso- and (-) tartrate. Rate-determining steps, which differ from that of the reaction involving L-malate, are discussed for the reaction involving these alternative substrates. Oxidation of hydroxymalonate, a process previously undetected with other malate dehydrogenases, is demonstrated fluorometrically. Hydroxymalonate and D-malate strongly enhance the fluorescence of the reduced nicotinamide adenine dinucleotide bound to the enzyme. The enzyme is A-stereospecific with respect to the coenzyme. Malate dehydrogenase is present in a single form in the Pseudomonas. The susceptibility of the enzyme to activation or inhibition by its substrates-particularly the favoring of the oxidation of malate at elevated concentrations-strongly resembles the properties of the mitochondrial enzymes. The present study reveals that whereas profound variations in chemical composition have occurred between the prokaryotic and eukaryotic enzymes, the physical and catalytic properties of malate dehydrogenase, unlike lactate dehydrogenase, are well conserved during the evolutionary process.  相似文献   
35.
36.
37.
Heat shock protein 90 (Hsp90), whose inhibitors have shown promising activity in clinical trials, is an attractive anticancer target. In this work, we first explored the significant pharmacophore features needed for Hsp90 inhibitors by generating a 3D-QSAR pharmacophore model. It was then used to virtually screen the SPECS databases, identifying 17 hits. Compound S1 and S13 exhibited the most potent inhibitory activity against Hsp90, with IC50 value 1.61±0.28 μM and 2.83±0.67 μM, respectively. Binding patterns analysis of the two compounds with Hsp90 revealed reasonable interaction modes. Further evaluation showed that the compounds exhibited good anti-proliferative effects against a series of cancer cell lines with high expression level of Hsp90. Meanwhile, S13 induced cell apoptosis in a dose-dependent manner in different cell lines. Based on the consideration of binding affinities, physicochemical properties and toxicities, 24 derivatives of S13 were designed, leading to the more promising compound S40, which deserves further optimization.  相似文献   
38.
At present, cardiovascular disease is one of the important factors of human death, and there are many kinds of proteins involved. Sirtuins family proteins are involved in various physiological and pathological activities of the human body. Among them, there are more and more studies on the relationship between sirtuin2 (SIRT2) protein and cardiovascular diseases. SIRT2 can effectively inhibit pathological cardiac hypertrophy. The effect of SIRT2 on ischaemia-reperfusion injury has different effects under different conditions. SIRT2 can reduce the level of reactive oxygen species (ROS), which may help to reduce the severity of diabetic cardiomyopathy. SIRT2 can affect a variety of cardiovascular diseases, energy metabolism and the ageing of cardiomyocytes, thereby affecting heart failure. SIRT2 also plays an important role in vascular disease. For endothelial cell damage used by oxidative stress, the role of SIRT2 is bidirectional, which is related to the degree of oxidative stress stimulation. When the degree of stimulation is small, SIRT2 plays a protective role, and when the degree of stimulation increases to a certain level, SIRT2 plays a negative role. In addition, SIRT2 is also involved in the remodelling of blood vessels and the repair of skin damage.  相似文献   
39.
Chalcone synthase (CHS) is a key enzyme and producing flavonoid derivatives as well play a vital roles in sustaining plant growth and development. However, the systematic and comprehensive analysis of CHS genes in island cotton (G. barbadense) has not been reported yet especially response to cytoplasmic male sterility (CMS). To fill this knowledge gap, a genome-wide investigation of CHS genes were studied in island cotton. A total of 20 GbCHS genes were identified and grouped into five GbCHSs. The gene structure analysis revealed that most of GbCHS genes consisted of two exons and one intron, and 20 motifs were identified. Twenty five pairs duplicated events (12 GbCHS genes) were identified including 23 segmental duplication pairs and two tandem duplication events, representing that GbCHS gene family amplification mainly owned to segmental duplication events and evolving slowly. Gene expression analysis exhibited that the GbCHS family genes presented a diversity expression patterns in various organs of cotton. Coupled with functional predictions and gene expression, the abnormal expression of GbCHS06, 10, 16 and 19 might be associated with pollen abortion of CMS line in island cotton. Conclusively, GbCHS genes exhibited diversity and conservation in many aspects, which will help to better understand functional studies and a reference for CHS research in island cotton and other plants.  相似文献   
40.
Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Numerous cancers share ten common traits (“hallmarks”) that govern the transformation of normal cells into cancer cells. Long non‐coding RNAs (lncRNAs) are important factors that contribute to tumorigenesis. However, very little is known about the cooperative relationships between lncRNAs and cancer hallmark‐associated genes in OSCC. Through integrative analysis of cancer hallmarks, somatic mutations, copy number variants (CNVs) and expression, some OSCC‐specific cancer hallmark‐associated genes and lncRNAs are identified. A computational framework to identify gene and lncRNA cooperative regulation pairs (GLCRPs) associated with different cancer hallmarks is developed based on the co‐expression and co‐occurrence of mutations. The distinct and common features of ten cancer hallmarks based on GLCRPs are characterized in OSCC. Cancer hallmark insensitivity to antigrowth signals and self‐sufficiency in growth signals are shared by most GLCRPs in OSCC. Some key GLCRPs participate in many cancer hallmarks in OSCC. Cancer hallmark‐associated GLCRP networks have complex patterns and specific functions in OSCC. Specially, some key GLCRPs are associated with the prognosis of OSCC patients. In summary, we generate a comprehensive landscape of cancer hallmark‐associated GLCRPs that can act as a starting point for future functional explorations, the identification of biomarkers and lncRNA‐based targeted therapy in OSCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号