全文获取类型
收费全文 | 491篇 |
免费 | 41篇 |
专业分类
532篇 |
出版年
2024年 | 2篇 |
2023年 | 7篇 |
2022年 | 9篇 |
2021年 | 16篇 |
2020年 | 10篇 |
2019年 | 13篇 |
2018年 | 13篇 |
2017年 | 12篇 |
2016年 | 17篇 |
2015年 | 26篇 |
2014年 | 25篇 |
2013年 | 29篇 |
2012年 | 43篇 |
2011年 | 57篇 |
2010年 | 38篇 |
2009年 | 22篇 |
2008年 | 32篇 |
2007年 | 32篇 |
2006年 | 15篇 |
2005年 | 21篇 |
2004年 | 16篇 |
2003年 | 18篇 |
2002年 | 15篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 8篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有532条查询结果,搜索用时 15 毫秒
21.
Adi Wolfson Aviad Atyya Christina Dlugy Dorith Tavor 《Bioprocess and biosystems engineering》2010,33(3):363-366
Glycerol triacetate was successfully used as a green solvent and as the acyl donor in the transesterification of isoamyl alcohol
to produce isoamyl acetate using free and immobilized Candida antarctica lipase B. Immobilized lipase was more catalytically active than free lipase and could be easily separated from the reaction
mixture by filtration. In addition, it was found that increasing either the reaction temperature or the enzyme to substrate
ratio increased the conversion of isoamyl alcohol. Using triacetin as the solvent also enabled the separation of product by
simple extraction with petroleum ether and catalyst recycling. 相似文献
22.
The Death-Associated Protein kinase (DAPk) family contains three closely related serine/threonine kinases, named DAPk, ZIPk and DRP-1, which display a high degree of homology in their catalytic domains. The recent discovery of protein-protein interactions and kinase/substrate relationships among these family members suggests that the three kinases may form multi-protein complexes capable of transmitting apoptotic or autophagic cell death signals in response to various cellular stresses including the misregulated expression of oncogenes in pre-malignant cells. Several lines of evidence indicate that the most studied member of the family, DAPk, has tumor and metastasis suppressor properties. Here we present an overview of the data connecting the DAPk family of proteins to cell death and malignant transformation and discuss the possible involvement of the autophagic cell death-inducing capacity of DAPk in its tumor suppressor activity. 相似文献
23.
24.
A cross-over trail of debrisoquine and guanethidine in 32 patients showed that both drugs were equally effective in lowering both systolic and diastolic blood pressure. The degree to which they were tolerated by the patients, however, differed greatly. After three months on each drug 18 patients preferred debrisoquine, nine preferred guanethidine, and five showed no particular preference. At current prices the cost of daily treatment to the patient was cheaper with debrisoquine than with guanethidine. 相似文献
25.
Plants are constantly being challenged by aspiring pathogens. In order to protect themselves, plants have developed numerous defense mechanisms that are either specific or non-specific to the pathogen. Pattern recognition receptors can trigger plant defense responses in response to specific ligands or patterns. EIX (ethylene-inducing xylanase) triggers a defense response via the LeEix2 receptor, while bacterial flagellin triggers plant innate immunity via the FLS2 receptor. Endocytosis has been suggested to be crucial for the process in both cases. Here we show that the EIX elicitor triggers internalization of the LeEix2 receptor. Treatment with endocytosis, actin or microtubule inhibitors greatly reduced the internalization of LeEix2. Additionally, we demonstrate that plant EHD2 binds to LeEix2 and is an important factor in its internalization and in regulation of the induction of defense responses such as the hypersensitive response, ethylene biosynthesis and induction of pathogenesis-related protein expression in the case of EIX/LeEix2 (an LRR receptor lacking a kinase domain), but does not appear to be involved in the FLS2 system (an LRR receptor possessing a kinase domain). Our results suggest that various endocytosis pathways are involved in the induction of plant defense responses. 相似文献
26.
Pollen tube elongation in the pistil is a crucial step in the sexual reproduction of plants. Because the wall of the pollen tube tip is composed of a single layer of pectin and, unlike most other plant cell walls, does not contain cellulose or callose, pectin methylesterases (PMEs) likely play a central role in the pollen tube growth and determination of pollen tube morphology. Thus, the functional studies of pollen-specific PMEs, which are still in their infancy, are important for understanding the pollen development. We identified a new Arabidopsis pollen-specific PME, AtPPME1, characterized its native expression pattern, and used reverse genetics to demonstrate its involvement in determination of the shape of the pollen tube and the rate of its elongation. 相似文献
27.
Zipper interacting protein kinase (ZIPK, also known as death-associated protein kinase 3 [DAPK3]) is a Ser/Thr kinase that functions in programmed cell death. Since its identification eight years ago, contradictory findings regarding its intracellular localization and molecular mode of action have been reported, which may be attributed to unpredicted differences among the human and rodent orthologs. By aligning the sequences of all available ZIPK orthologs, from fish to human, we discovered that rat and mouse sequences are more diverged from the human ortholog relative to other, more distant, vertebrates. To test experimentally the outcome of this sequence divergence, we compared rat ZIPK to human ZIPK in the same cellular settings. We found that while ectopically expressed human ZIPK localized to the cytoplasm and induced membrane blebbing, rat ZIPK localized exclusively within nuclei, mainly to promyelocytic leukemia oncogenic bodies, and induced significantly lower levels of membrane blebbing. Among the unique murine (rat and mouse) sequence features, we found that a highly conserved phosphorylation site, previously shown to have an effect on the cellular localization of human ZIPK, is absent in murines but not in earlier diverging organisms. Recreating this phosphorylation site in rat ZIPK led to a significant reduction in its promyelocytic leukemia oncogenic body localization, yet did not confer full cytoplasmic localization. Additionally, we found that while rat ZIPK interacts with PAR-4 (also known as PAWR) very efficiently, human ZIPK fails to do so. This interaction has clear functional implications, as coexpression of PAR-4 with rat ZIPK caused nuclear to cytoplasm translocation and induced strong membrane blebbing, thus providing the murine protein a possible adaptive mechanism to compensate for its sequence divergence. We have also cloned zebrafish ZIPK and found that, like the human and unlike the murine orthologs, it localizes to the cytoplasm, and fails to bind the highly conserved PAR-4 protein. This further supports the hypothesis that murine ZIPK underwent specific divergence from a conserved consensus. In conclusion, we present a case of species-specific divergence occurring in a specific branch of the evolutionary tree, accompanied by the acquisition of a unique protein–protein interaction that enables conservation of cellular function. 相似文献
28.
The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity 下载免费PDF全文
García-Mata R Dubash AD Sharek L Carr HS Frost JA Burridge K 《Molecular and cellular biology》2007,27(24):8683-8697
Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation. 相似文献
29.
Krichevsky A Kozlovsky SV Tian GW Chen MH Zaltsman A Citovsky V 《Developmental biology》2007,303(2):405-420
Sexual reproduction of flowering plants depends on delivery of the sperm to the egg, which occurs through a long, polarized projection of a pollen cell, called the pollen tube. The pollen tube grows exclusively at its tip, and this growth is distinguished by very fast rates and reaches extended lengths. Thus, one of the most fascinating aspects of pollen biology is the question of how enough cell wall material is produced to accommodate such rapid extension of pollen tube, and how the cell wall deposition and structure are regulated to allow for rapid changes in the direction of growth. This review discusses recent advances in our understanding of the mechanism of pollen tube growth, focusing on such basic cellular processes as control of cell shape and growth by a network of cell wall-modifying enzymes, molecular motor-mediated vesicular transport, and intracellular signaling by localized gradients of second messengers. 相似文献
30.
Autophagy is the main cellular catabolic process responsible for degrading organelles and large protein aggregates. It is initiated by the formation of a unique membrane structure, the phagophore, which engulfs part of the cytoplasm and forms a double‐membrane vesicle termed the autophagosome. Fusion of the outer autophagosomal membrane with the lysosome and degradation of the inner membrane contents complete the process. The extent of autophagy must be tightly regulated to avoid destruction of proteins and organelles essential for cell survival. Autophagic activity is thus regulated by external and internal cues, which initiate the formation of well‐defined autophagy‐related protein complexes that mediate autophagosome formation and selective cargo recruitment into these organelles. Autophagosome formation and the signaling pathways that regulate it have recently attracted substantial attention. In this review, we analyze the different signaling pathways that regulate autophagy and discuss recent progress in our understanding of autophagosome biogenesis. 相似文献