首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   23篇
  国内免费   1篇
  341篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   19篇
  2014年   6篇
  2013年   19篇
  2012年   21篇
  2011年   10篇
  2010年   13篇
  2009年   16篇
  2008年   8篇
  2007年   8篇
  2006年   9篇
  2005年   8篇
  2004年   21篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   12篇
  1999年   11篇
  1998年   15篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   10篇
  1984年   2篇
  1983年   8篇
  1981年   2篇
  1978年   4篇
  1977年   3篇
  1974年   2篇
  1973年   3篇
  1971年   2篇
  1967年   2篇
  1957年   1篇
  1953年   1篇
  1952年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
101.
Sea urchin Hox genes: insights into the ancestral Hox cluster   总被引:3,自引:0,他引:3  
We describe the Hox cluster in the radially symmetric sea urchin and compare our findings to what is known from clusters in bilaterally symmetric animals. Several Hox genes from the direct-developing sea urchin Heliocidaris erythrogramma are described. CHEF gel analysis shows that the Hox genes are clustered on a < or = 300 kilobase (kb) fragment of DNA, and only a single cluster is present, as in lower chordates and other nonvertebrate metazoans. Phylogenetic analyses of sea urchin, amphioxus, Drosophila, and selected vertebrate Hox genes confirm that the H. erythrogramma genes, and others previously cloned from other sea urchins, belong to anterior, central, and posterior groups. Despite their radial body plan and lack of cephalization, echinoderms retain at least one of the anterior group Hox genes, an orthologue of Hox3. The structure of the echinoderm Hox cluster suggests that the ancestral deuterostome had a Hox cluster more similar to the current chordate cluster than was expected Sea urchins have at least three Abd-B type genes, suggesting that Abd-B expansion began before the radiation of deuterostomes.   相似文献   
102.
To investigate the role of subcellular localization in regulating the specificity of G protein betagamma signaling, we have applied the strategy of bimolecular fluorescence complementation (BiFC) to visualize betagamma dimers in vivo. We fused an amino-terminal yellow fluorescent protein fragment to beta and a carboxyl-terminal yellow fluorescent protein fragment to gamma. When expressed together, these two proteins produced a fluorescent signal in human embryonic kidney 293 cells that was not obtained with either subunit alone. Fluorescence was dependent on betagamma assembly in that it was not obtained using beta2 and gamma1, which do not form a functional dimer. In addition to assembly, BiFC betagamma complexes were functional as demonstrated by more specific plasma membrane labeling than was obtained with individually tagged fluorescent beta and gamma subunits and by their abilities to potentiate activation of adenylyl cyclase by alpha(s) in COS-7 cells. To investigate isoform-dependent targeting specificity, the localization patterns of dimers formed by pair-wise combinations of three different beta subunits with three different gamma subunits were compared. BiFC betagamma complexes containing either beta1 or beta2 localized to the plasma membrane, whereas those containing beta5 accumulated in the cytosol or on intracellular membranes. These results indicate that the beta subunit can direct trafficking of the gamma subunit. Taken together with previous observations, these results show that the G protein alpha, beta, and gamma subunits all play roles in targeting each other. This method of specifically visualizing betagamma dimers will have many applications in sorting out roles for particular betagamma complexes in a wide variety of cell types.  相似文献   
103.
Glycogen synthase kinase 3 (GSK-3) is a constitutively active kinase that negatively regulates its substrates, one of which is beta-catenin, a downstream effector of the Wnt signaling pathway that is required for dorsal-ventral axis specification in the Xenopus embryo. GSK-3 activity is regulated through the opposing activities of multiple proteins. Axin, GSK-3, and beta-catenin form a complex that promotes the GSK-3-mediated phosphorylation and subsequent degradation of beta-catenin. Adenomatous polyposis coli (APC) joins the complex and downregulates beta-catenin in mammalian cells, but its role in Xenopus is less clear. In contrast, GBP, which is required for axis formation in Xenopus, binds and inhibits GSK-3. We show here that GSK-3 binding protein (GBP) inhibits GSK-3, in part, by preventing Axin from binding GSK-3. Similarly, we present evidence that a dominant-negative GSK-3 mutant, which causes the same effects as GBP, keeps endogenous GSK-3 from binding to Axin. We show that GBP also functions by preventing the GSK-3-mediated phosphorylation of a protein substrate without eliminating its catalytic activity. Finally, we show that the previously demonstrated axis-inducing property of overexpressed APC is attributable to its ability to stabilize cytoplasmic beta-catenin levels, demonstrating that APC is impinging upon the canonical Wnt pathway in this model system. These results contribute to our growing understanding of how GSK-3 regulation in the early embryo leads to regional differences in beta-catenin levels and establishment of the dorsal axis.  相似文献   
104.
105.
106.
Heparan sulfate proteoglycans expressed on the Xenopus animal cap ectoderm have been implicated in transmitting left-right information to heart and gut primordia. We report here that syndecan-2 functions in the ectoderm to mediate cardiac and visceral situs, upstream of known asymmetrically expressed genes but independently of its ability to mediate fibronectin fibrillogenesis. Left-right development is dependent on a distinct subset of glycosaminoglycan attachment sites on syndecan-2. A novel in vivo approach with enterokinase demonstrates that syndecan-2 functions in left-right patterning during early gastrulation. We describe a cell-nonautonomous role for ectodermal syndecan-2 in transmitting left-right information to migrating mesoderm. The results further suggest that this function may be related to the transduction of Vg1-related signals.  相似文献   
107.
Glycerol 3-phosphate acylation was studied in type II cells isolated from adult rat lung. The process was found to be largely microsomal. In the microsomes phosphatidic acid is the main product of glycerol 3-phosphate acylation. Glycerol-3-phosphate acyltransferase is rate limiting in the phosphatidic acid formation by the microsomes. Type II cell microsomes incorporate palmitoyl and oleoyl residues into phosphatidic acid at an equal rate if palmitoyl-CoA and oleoyl-CoA are added separately. However, if palmitoyl-CoA and oleoyl-CoA are added as an equimolar mixture the unsaturated fatty acyl moiety is incorporated much faster. Under the latter conditions monoenoic species constitute the most abundant products of glycerol 3-phosphate acylation. The microsomes incorporate both palmitoyl and oleoyl residues readily into both the 1- and 2-position of phosphatidic acid, even when palmitoyl-CoA and oleoyl-CoA are added together. Assuming that both phosphatidic acid phosphatase and cholinephosphotransferase do not discriminate against substrates with an unsaturated acyl moiety at the 1-position and a saturated acyl moiety at the 2-position, the last two observations indicate that a considerable percentage of phosphatidylcholine molecules synthesized de novo may have a saturated fatty acid at the 2-position and an unsaturated fatty acid at the 1-position, and that remodeling at the 1-position may be important for the formation of surfactant dipalmitoylphosphatidylcholine. They also indicate that type II cell microsomes are capable of synthesizing the dipalmitoyl species of phosphatidic acid. However, since there is a preference for the acylation of glycerol 3-phosphate with unsaturated fatty acyl residues, the percentage of dipalmitoyl species in the synthesized phosphatidic acid, and thereby the percentage of dipalmitoyl species in the phosphatidylcholine synthesized de novo, will probably depend on the relative availability of the various acyl-CoA species.  相似文献   
108.
Cilia on the ventral side of the mouse node have been implicated in initiating the left-right axis during embryonic development, but how cilia relate to other factors in the left-right pathway and the mechanism by which cilia convey patterning information remain uncertain.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号