首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1969篇
  免费   119篇
  国内免费   1篇
  2023年   5篇
  2022年   4篇
  2021年   10篇
  2020年   10篇
  2019年   18篇
  2018年   28篇
  2017年   14篇
  2016年   30篇
  2015年   46篇
  2014年   50篇
  2013年   164篇
  2012年   111篇
  2011年   120篇
  2010年   59篇
  2009年   75篇
  2008年   131篇
  2007年   138篇
  2006年   131篇
  2005年   136篇
  2004年   139篇
  2003年   139篇
  2002年   129篇
  2001年   37篇
  2000年   29篇
  1999年   29篇
  1998年   40篇
  1997年   28篇
  1996年   20篇
  1995年   16篇
  1994年   19篇
  1993年   8篇
  1992年   20篇
  1991年   15篇
  1990年   15篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   15篇
  1981年   15篇
  1980年   12篇
  1979年   6篇
  1978年   6篇
  1974年   4篇
  1973年   3篇
  1970年   4篇
  1968年   4篇
排序方式: 共有2089条查询结果,搜索用时 15 毫秒
271.
Cryo-electron tomography of frozen hydrated cells has provided cell biologists with an indispensable tool for delineating three-dimensional arrangements of cellular ultrastructure. To avoid the damage induced by electron irradiation, images of frozen hydrated biological specimens are generally acquired under low-dose conditions, resulting in weakly contrasted images that are difficult to interpret, and in which ultrastructural details remain ambiguous. Zernike phase contrast transmission electron microscopy can improve contrast, and can also fix a fatal problem related to the inherent low contrast of conventional electron microscopy, namely, image modulation due to the unavoidable setting of deep defocus. In this study, we applied cryo-electron tomography enhanced with a Zernike phase plate, which avoids image modulation by allowing in-focus setting. The Zernike phase contrast cryo-electron tomography has a potential to suppress grainy background generation. Due to the smoother background in comparison with defocus phase contrast cryo-electron tomography, Zernike phase contrast cryo-electron tomography could yield higher visibility for particulate or filamentous ultrastructure inside the cells, and allowed us to clearly recognize membrane protein structures.  相似文献   
272.
Y Kobayashi  Y Suzuki 《PloS one》2012,7(7):e40422
The propagation of influenza A virus depends on the balance between the activities of hemagglutinin (HA) for binding to host cells and neuraminidase (NA) for releasing from infected cells (HA-NA balance). Since the host cell membrane and the sialic acid receptor are negatively charged, the amino acid substitutions increasing (charge+) and decreasing (charge-) the positive charge of HA subunit 1 (HA1) enhance and reduce, respectively, the binding avidity and affinity. The positive charge of HA1 in human influenza A virus bearing subtype H3N2 (A/H3N2 virus) was observed to have increased during evolution, but the evolutionary mechanism for this observation was unclear because this may disrupt the HA-NA balance. Here we show, from the phylogenetic analysis of HA for human A/H3N2 and A/H1N1 viruses, that the relative frequencies of charge+ and charge- substitutions were elevated on the branches where the number of N-glycosylation sites (NGS) increased and decreased, respectively, compared to those where the number of NGS did not change. On the latter branches, the net-charge of HA1 appeared to have been largely maintained to preserve its structure and function. Since the charge+ and charge- substitutions in HA1 have opposite effects to the gain and loss of NGS on the binding and release of the virus, the net-charge of HA1 may have evolved to compensate for the effect of the gain and loss of NGS, probably through changing the avidity. Apparently, the relative frequency of charge- substitutions in HA1 of A/H3N2 virus was elevated after the introduction of oseltamivir, and that of charge+ substitutions in HA1 of A/H1N1 virus was elevated after the spread of oseltamivir resistance. These observations may also be explained by the compensatory effect of the net-charge in HA1 on the NA activity for keeping the HA-NA balance.  相似文献   
273.
The relationship between sequence polymorphisms and human disease has been studied mostly in terms of effects of single nucleotide polymorphisms (SNPs) leading to single amino acid substitutions that change protein structure and function. However, less attention has been paid to more drastic sequence polymorphisms which cause premature termination of a protein’s sequence or large changes, insertions, or deletions in the sequence. We have analyzed a large set (n = 512) of insertions and deletions (indels) and single nucleotide polymorphisms causing premature termination of translation in disease-related genes. Prediction of protein-destabilization effects was performed by graphical presentation of the locations of polymorphisms in the protein structure, using the Genomes TO Protein (GTOP) database, and manual annotation with a set of specific criteria. Protein-destabilization was predicted for 44.4% of the nonsense SNPs, 32.4% of the frameshifting indels, and 9.1% of the non-frameshifting indels. A prediction of nonsense-mediated decay allowed to infer which truncated proteins would actually be translated as defective proteins. These cases included the proteins linked to diseases inherited dominantly, suggesting a relation between these diseases and toxic aggregation. Our approach would be useful in identifying potentially aggregation-inducing polymorphisms that may have pathological effects.  相似文献   
274.
Previous studies have found that Westerners are more likely than East Asians to attend to central objects (i.e., analytic attention), whereas East Asians are more likely than Westerners to focus on background objects or context (i.e., holistic attention). Recently, it has been proposed that the physical environment of a given culture influences the cultural form of scene cognition, although the underlying mechanism is yet unclear. This study examined whether the physical environment influences oculomotor control. Participants saw culturally neutral stimuli (e.g., a dog in a park) as a baseline, followed by Japanese or United States scenes, and finally culturally neutral stimuli again. The results showed that participants primed with Japanese scenes were more likely to move their eyes within a broader area and they were less likely to fixate on central objects compared with the baseline, whereas there were no significant differences in the eye movements of participants primed with American scenes. These results suggest that culturally specific patterns in eye movements are partly caused by the physical environment.  相似文献   
275.
A series of nonsecosteroidal vitamin D(3) analogs with carboxylic acid were explored. Through our systematic SAR studies on the side chain moiety, compound 6b was identified as the optimal compound showing excellent vitamin D receptor (VDR) agonistic activity. Compound 6b had the diethyl group in the terminal which was bound by (E)-olefin linker to the bisphenyl core. Calculating the volume of the side chain showed that the diethyl group in 6b filled the hydrophobic region of VDR with the ideal packing coefficient based on the 55% rule, and that this resulted in the most potent in vitro activity.  相似文献   
276.
In this report, we describe the synthesis and biological evaluation of β(1,3) oligosaccharides that contain an aminoalkyl group and their biological evaluation. A 2,3 diol glycoside with a 4,6 benzylidene protecting group was used as an effective glycosyl acceptor for the synthesis of some β(1,3) linked glycosides. The use of a combination of a linear tetrasaccharide and a branched pentasaccharide as glycosyl donors led to the preparation of β(1,3) linear octa- to hexadecasaccharides and branched nona- to heptadecasaccharides in good total yields. Measurements of the competitive effects of the oligosaccharides on the binding of a soluble form of Dectin-1 to a solid-supported Schizophyllan (SPG) revealed that the branched heptadecasaccharide and the linear hexadecasaccharides also have binding activity for Dectin-1. In addition, the two oligosaccharides, both of which contain a β(1,3) hexadecasaccharide backbone, exhibited agonist activity in a luciferase-assisted NF-κB assay. STD-NMR analyses of complexes of Dectin-1 and the linear hexadecasaccharides clearly indicate Dectin-1 specifically recognizes the sugar part of the oligosaccharides and not the aminoalkyl chain.  相似文献   
277.

Background

How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression.

Results

Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN.

Conclusions

We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors underlying these traits. This study demonstrates a trade-off between the evolution of a non-visual sensory system and eye regression during the adaptive evolution of Astyanax to the cave environment.
  相似文献   
278.
To evaluate the involvement of trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR2 and GluR3 subunits in an acute inflammatory orofacial pain, we analyzed nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK) and Fos expression in Vi/Vc, Vc and C1/C2 in GluR2 delta7 knock-in (KI), GluR3 delta7 KI mice and wild-type mice. We also studied Vc neuronal activity to address the hypothesis that trafficking of GluR2 and GluR3 subunits plays an important role in Vi/Vc, Vc and C1/C2 neuronal activity associated with orofacial inflammation in these mice. Late nocifensive behavior was significantly depressed in GluR2 delta7 KI and GluR3 delta7 KI mice. In addition, the number of pERK-immunoreactive (IR) cells was significantly decreased bilaterally in the Vi/Vc, Vc and C1/C2 in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice at 40 min after formalin injection, and was also significantly smaller in GluR3 delta7 KI compared to GluR2 delta7 KI mice. The number of Fos protein-IR cells in the ipsilateral Vi/Vc, Vc and C1/C2 was also significantly smaller in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice 40 min after formalin injection. Nociceptive neurons functionally identified as wide dynamic range neurons in the Vc, where pERK- and Fos protein-IR cell expression was prominent, showed significantly lower spontaneous activity in GluR2 delta7 KI and GluR3 delta7 KI mice than wild-type mice following formalin injection. These findings suggest that GluR2 and GluR3 trafficking is involved in the enhancement of Vi/Vc, Vc and C1/C2 nociceptive neuronal excitabilities at 16-60 min following formalin injection, resulting in orofacial inflammatory pain.  相似文献   
279.
An isopullulanase (IPU) from Aspergillus niger ATCC9642 hydrolyzes α-1,4-glucosidic linkages of pullulan to produce isopanose. Although IPU does not hydrolyze dextran, it is classified into glycoside hydrolase family 49 (GH49), major members of which are dextran-hydrolyzing enzymes. IPU is highly glycosylated, making it difficult to obtain its crystal. We used endoglycosidase Hf to cleave the N-linked oligosaccharides of IPU, and we here determined the unliganded and isopanose-complexed forms of IPU, both solved at 1.7-Å resolution. IPU is composed of domains N and C joined by a short linker, with electron density maps for 11 or 12 N-acetylglucosamine residues per molecule. Domain N consists of 13 β-strands and forms a β-sandwich. Domain C, where the active site is located, forms a right-handed β-helix, and the lengths of the pitches of each coil of the β-helix are similar to those of GH49 dextranase and GH28 polygalacturonase. The entire structure of IPU resembles that of a GH49 enzyme, Penicillium minioluteum dextranase (Dex49A), despite a difference in substrate specificity. Compared with the active sites of IPU and Dex49A, the amino acid residues participating in subsites + 2 and + 3 are not conserved, and the glucose residues of isopanose bound to IPU completely differ in orientation from the corresponding glucose residues of isomaltose bound to Dex49A. The shape of the catalytic cleft characterized by the seventh coil of the β-helix and a loop from domain N appears to be critical in determining the specificity of IPU for pullulan.  相似文献   
280.
The bacterial flagellar motor is a rotary motor in the cell envelope of bacteria that couples ion flow across the cytoplasmic membrane to torque generation by independent stators anchored to the cell wall. The recent observation of stepwise rotation of a Na+-driven chimeric motor in Escherichia coli promises to reveal the mechanism of the motor in unprecedented detail. We measured torque-speed relationships of this chimeric motor using back focal plane interferometry of polystyrene beads attached to flagellar filaments in the presence of high sodium-motive force (85 mM Na+). With full expression of stator proteins the torque-speed curve had the same shape as those of wild-type E. coli and Vibrio alginolyticus motors: the torque is approximately constant (at ∼ 2200 pN nm) from stall up to a “knee” speed of ∼ 420 Hz, and then falls linearly with speed, extrapolating to zero torque at ∼ 910 Hz. Motors containing one to five stators generated ∼ 200 pN nm per stator at speeds up to ∼ 100 Hz/stator; the knee speed in 4- and 5-stator motors is not significantly slower than in the fully induced motor. This is consistent with the hypothesis that the absolute torque depends on stator number, but the speed dependence does not. In motors with point mutations in either of two critical conserved charged residues in the cytoplasmic domain of PomA, R88A and R232E, the zero-torque speed was reduced to ∼ 400 Hz. The torque at low speed was unchanged by mutation R88A but was reduced to ∼ 1500 pN nm by R232E. These results, interpreted using a simple kinetic model, indicate that the basic mechanism of torque generation is the same regardless of stator type and coupling ion and that the electrostatic interaction between stator and rotor proteins is related to the torque-speed relationship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号