首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   7篇
  264篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   22篇
  2012年   11篇
  2011年   11篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   13篇
  2006年   12篇
  2005年   16篇
  2004年   24篇
  2003年   29篇
  2002年   21篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1989年   1篇
  1988年   1篇
  1983年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
131.
132.
133.
DnaA protein binds specifically to a group of binding sites collectively called as DnaA boxes within the bacterial replication origin to induce local unwinding of duplex DNA. The DNA-binding domain of DnaA, domain IV, comprises the C-terminal 94 amino acid residues of the protein. We overproduced and purified a protein containing only this domain plus a methionine residue. This protein was stable as a monomer and maintained DnaA box-specific binding activity. We then analyzed its solution structure by CD spectrum and heteronuclear multi-dimensional NMR experiments. We established extensive assignments of the 1H, 13C, and 15N nuclei, and revealed by obtaining combined analyses of chemical shift index and NOE connectivities that DnaA domain IV contains six alpha-helices and no beta-sheets, consistent with results of CD analysis. Mutations known to reduce DnaA box-binding activity were specifically located in or near two of the alpha-helices. These findings indicate that the DNA-binding fold of DnaA domain IV is unique among origin-binding proteins.  相似文献   
134.
We present a high‐resolution map of genomic transformation‐competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10 000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13 577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large‐scale data set of TAC clones with high‐resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready‐to‐go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.  相似文献   
135.
Crystal structures of the ferric and ferrous heme complexes of HmuO, a 24-kDa heme oxygenase of Corynebacterium diphtheriae, have been refined to 1.4 and 1.5 A resolution, respectively. The HmuO structures show that the heme group is closely sandwiched between the proximal and distal helices. The imidazole group of His-20 is the proximal heme ligand, which closely eclipses the beta- and delta-meso axis of the porphyrin ring. A long range hydrogen bonding network is present, connecting the iron-bound water ligand to the solvent water molecule. This enables proton transfer from the solvent to the catalytic site, where the oxygen activation occurs. In comparison to the ferric complex, the proximal and distal helices move closer to the heme plane in the ferrous complex. Together with the kinked distal helix, this movement leaves only the alpha-meso carbon atom accessible to the iron-bound dioxygen. The heme pocket architecture is responsible for stabilization of the ferric hydroperoxo-active intermediate by preventing premature heterolytic O-O bond cleavage. This allows the enzyme to oxygenate selectively at the alpha-meso carbon in HmuO catalysis.  相似文献   
136.
The most recent refinement of the crystallographic structure of oxyhaemoglobin (oxyHb) was completed in 1983, and differences between this real-space refined model and later R state models have been interpreted as evidence of crystallisation artefacts, or numerous sub-states. We have refined models of deoxy, oxy and carbonmonoxy Hb to 1.25 A resolution each, and compare them with other Hb structures. It is shown that the older structures reflect the software used in refinement, and many differences with newer structures are unlikely to be physiologically relevant. The improved accuracy of our models clarifies the disagreement between NMR and X-ray studies of oxyHb, the NMR experiments suggesting a hydrogen bond to exist between the distal histidine and oxygen ligand of both the alpha and beta-subunits. The high-resolution crystal structure also reveals a hydrogen bond in both subunit types, but with subtly different geometry which may explain the very different behaviour when this residue is mutated to glycine in alpha or beta globin. We also propose a new set of relatively fixed residues to act as a frame of reference; this set contains a similar number of atoms to the well-known "BGH" frame yet shows a much smaller rmsd value between R and T state models of HbA.  相似文献   
137.
138.
Ishida M  Dohmae N  Shiro Y  Oku T  Iizuka T  Isogai Y 《Biochemistry》2004,43(30):9823-9833
Natural c-type cytochromes are characterized by the consensus Cys-X-X-Cys-His heme-binding motif (where X is any amino acid) by which the heme is covalently attached to protein by the addition of the sulfhydryl groups of two cysteine residues to the vinyl groups of the heme. In this work, the consensus sequence was used for the heme-binding site of a designed four-helix bundle, and the apoproteins with either a histidine residue or a methionine residue positioned at the sixth coordination site were synthesized and reacted with iron protoporphyrin IX (protoheme) under mild reducing conditions in vitro. These polypeptides bound one heme per helix-loop-helix monomer via a single thioether bond and formed four-helix bundle dimers in the holo forms as designed. They exhibited visible absorption spectra characteristic of c-type cytochromes, in which the absorption bands shifted to lower wavelengths in comparison with the b-type heme binding intermediates of the same proteins. Unexpectedly, the designed cytochromes c with bis-His-coordinated heme iron exhibited oxidation-reduction potentials similar to those of their b-type intermediates, which have no thioether bond. Furthermore, the cytochrome c with His and Met residues as the axial ligands exhibited redox potentials increased by only 15-30 mV in comparison with the cytochrome with the bis-His coordination. These results indicate that highly positive redox potentials of natural cytochromes c are not only due to the heme covalent structure, including the Met ligation, but also due to noncovalent and hydrophobic environments surrounding the heme. The covalent attachment of heme to the polypeptide in natural cytochromes c may contribute to their higher redox potentials by reducing the thermodynamic stability of the oxidized forms relatively against that of the reduced forms without the loss of heme.  相似文献   
139.
Susceptibility to infection with Leishmania amazonensis promastigotes was examined in six B10 congenic mouse strains, including C57BL/10J (H2b), B10.BR (H2k), B10.M (H2f), B10.S (H2s), B10.RIII (H2r), and B10.D2 (H2d). All strains of mice developed skin nodules with punch-out ulcers by 8 weeks post-infection, but B10.M and B10.S mice showed resolution of cutaneous leishmaniasis lesions by 16 weeks post-infection. In addition, the skin lesions were much larger in BALB congenic mice than in B10 and C3H mice, even though these mice share the same H2 haplotypes. These results suggest that H2 complex controls the growth of L. amazonensis in cutaneous lesions, and that non-H2 genes inherited by BALB congenic mice have a more potent role than the H2 complex in lesion progression.  相似文献   
140.
Induction of the mitochondrial nitrate-respiration (denitrification) system of the fungus Fusarium oxysporum requires the supply of low levels of oxygen (O(2)). Here we show that O(2) and nitrate (NO(3)(-)) respiration function simultaneously in the mitochondria of fungal cells incubated under hypoxic, denitrifying conditions in which both O(2) and NO(3)(-) act as the terminal electron acceptors. The NO(3)(-) and nitrite (NO(2)(-)) reductases involved in fungal denitrification share the mitochondrial respiratory chain with cytochrome oxidase. F. oxysporum cytochrome c(549) can serve as an electron donor for both NO(2)(-) reductase and cytochrome oxidase. We are the first to demonstrate hybrid respiration in respiring eukaryotic mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号