首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   10篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   11篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   16篇
  2006年   18篇
  2005年   12篇
  2004年   12篇
  2003年   17篇
  2002年   20篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1986年   2篇
  1933年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
21.
The structure of an AKAP docked to the dimerization/docking (D/D) domain of the type II (RIIalpha) isoform of protein kinase A (PKA) has been well characterized, but there currently is no detailed structural information of an AKAP docked to the type I (RIalpha) isoform. Dual-specific AKAP2 (D-AKAP2) binds in the nanomolar range to both isoforms and provided us with an opportunity to characterize the isoform-selective nature of AKAP binding using a common docked ligand. Hydrogen/deuterium (H/D) exchange combined with mass spectrometry (DXMS) was used to probe backbone structural changes of an alpha-helical A-kinase binding (AKB) motif from D-AKAP2 docked to both RIalpha and RIIalpha D/D domains. The region of protection upon complex formation and the magnitude of protection from H/D exchange were determined for both interacting partners in each complex. The backbone of the AKB ligand was more protected when bound to RIalpha compared to RIIalpha, suggesting an increased helical stabilization of the docked AKB ligand. This combined with a broader region of backbone protection induced by the AKAP on the docking surface of RIalpha indicated that there were more binding constraints for the AKB ligand when bound to RIalpha. This was in contrast to RIIalpha, which has a preformed, localized binding surface. These distinct modes of AKAP binding may contribute to the more discriminating nature of the RIalpha AKAP-docking surface. DXMS provides valuable structural information for understanding binding specificity in the absence of a high-resolution structure, and can readily be applied to other protein-ligand and protein-protein interactions.  相似文献   
22.
Intra-abdominal fat accumulation is involved in development of the metabolic syndrome, which is associated with insulin and leptin resistance. We show here that ectopic expression of very low levels of uncoupling protein 1 (UCP1) in epididymal fat (Epi) reverses both insulin and leptin resistance. UCP1 expression in Epi improved glucose tolerance and decreased food intake in both diet-induced and genetically obese mouse models. In contrast, UCP1 expression in Epi of leptin-receptor mutant mice did not alter food intake, though it significantly decreased blood glucose and insulin levels. Thus, hypophagia induction requires a leptin signal, while the improved insulin sensitivity appears to be leptin independent. In wild-type mice, local-nerve dissection in the epididymis or pharmacological afferent blockade blunted the decrease in food intake, suggesting that afferent-nerve signals from intra-abdominal fat tissue regulate food intake by modulating hypothalamic leptin sensitivity. These novel signals are potential therapeutic targets for the metabolic syndrome.  相似文献   
23.
Objective: Several lines of evidence suggest important roles for adiponectin in glucose and lipid metabolism and atherosclerosis. However, the mechanisms regulating serum adiponectin levels and adiponectin production are still not completely understood. Our aim was to determine whether adiponectin synthesis is physiologically regulated by the sympathetic nervous system (SNS). Research Methods and Procedures: Mice were exposed to cold (4 °C) for 12 hours and for 24 hours with or without inhibition of noradrenaline synthesis or pan‐β adrenergic function, followed by measurement of serum adiponectin concentrations and levels of adiponectin and uncoupling protein (UCP) 1 expressions in various white adipose tissues (WATs). Results: Cold exposure significantly reduced serum adiponectin concentrations without changing body weights or WAT sizes in either subcutaneous or intra‐abdominal fat tissues. The serum adiponectin reduction was associated with a decrease in adiponectin mRNA expression in subcutaneous, epididymal, and mesenteric fat tissues. In these adipose tissues, UCP1 expression was markedly enhanced, suggesting SNS activation in these tissues. Administration of α‐methyl‐p‐tyrosine or a combination of SR59230A and propranolol reversed the cold‐exposure‐induced decreases in serum adiponectin concentrations and adiponectin mRNA expression in these tissues. In contrast, in retroperitoneal fat, the effects of cold exposure on adiponectin and UCP1 expressions were strikingly weak but were not reversed by SNS inhibitors. Discussion: SNS physiologically regulates serum adiponectin levels and adiponectin synthesis in WATs in vivo, although responsiveness to SNS stimulation differs markedly among WATs. Sympathetic activation might be involved in development of the metabolic syndrome by modulation of serum adiponectin concentrations.  相似文献   
24.
The spontaneous crescentic glomerulonephritis-forming/Kinjoh (SCG/Kj) mouse is a model of human crescentic glomerulonephritis and vasculitis associated with the production of the myeloperoxidase (MPO)-specific antineutrophil cytoplasmic autoantibody (MPO-ANCA). Although the disease is mediated initially by mutation of the Fas gene (lpr), SCG/Kj mice also have non-Fas predisposing genetic factors. To define these factors, genome-wide quantitative trait locus (QTL) mapping was performed on female (B(6)x SCG/Kj) F(2) intercross mice. Fourteen non-Fas QTLs were identified. QTLs of glomerulonephritis were located on chromosomes 1, 10, 13, 16, and 17, vasculitis on chromosomes 1 and 17, splenomegaly on chromosome 1, hypergammaglobulinemia on chromosomes 1, 2, 4, 6, 7, 11, 13, and 17, antinuclear Ab on chromosomes 1, 8, 10, and 12, and MPO-ANCA production on chromosomes 1 and 10. Significant QTLs derived from SCG/Kj on chromosomes 1, 2, 7, and 13 were designated Scg-1 to Scg-5, respectively, and those derived from B(6) on chromosomes 4, 6, 17, and 10 were designated Sxb-1 to Sxb-4, respectively. Two loci linked to MPO-ANCA production on chromosomes 1 and 10 were designated Man-1 and Man-2 (for MPO-ANCA), respectively. Although both Scg-1 and Scg-2 were on chromosome 1 and shared several functions, it was of interest that aberrant MPO-ANCA production was exclusively controlled by Man-1, the centromeric half region of the Scg-2 chromosomal segment. We also examined the epistatic effects between the lpr mutation and non-Fas susceptibility genes. QTLs are discussed in relation to previously described loci, with emphasis on their candidate genes.  相似文献   
25.
Abnormal glucagon secretion is often associated with diabetes mellitus. However, the mechanisms by which nutrients modulate glucagon secretion remain poorly understood. Paracrine modulation by beta- or delta-cells is among the postulated mechanisms. Herein we present further evidence of the paracrine mechanism. First, to activate cellular metabolism and thus hormone secretion in response to specific secretagogues, we engineered insulinoma INS-1E cells using an adenovirus-mediated expression system. Expression of the Na+-dependent dicarboxylate transporter (NaDC)-1 resulted in 2.5- to 4.6-fold (P < 0.01) increases in insulin secretion in response to various tricarboxylic acid cycle intermediates. Similarly, expression of glycerol kinase (GlyK) increased insulin secretion 3.8- or 4.2-fold (P < 0.01) in response to glycerol or dihydroxyacetone, respectively. This cell engineering method was then modified, using the Cre-loxP switching system, to activate beta-cells and non-beta-cells separately in rat islets. NaDC-1 expression only in non-beta-cells, among which alpha-cells are predominant, caused an increase (by 1.8-fold, P < 0.05) in glucagon secretion in response to malate or succinate. However, the increase in glucagon release was prevented when NaDC-1 was expressed in whole islets, i.e., both beta-cells and non-beta-cells. Similarly, an increase in glucagon release with glycerol was observed when GlyK was expressed only in non-beta-cells but not when it was expressed in whole islets. Furthermore, dicarboxylates suppressed basal glucagon secretion by 30% (P < 0.05) when NaDC-1 was expressed only in beta-cells. These data demonstrate that glucagon secretion from rat alpha-cells depends on beta-cell activation and provide insights into the coordinated mechanisms underlying hormone secretion from pancreatic islets.  相似文献   
26.
The WFS1 gene, encoding an endoplasmic reticulum (ER) membrane glycoprotein, is mutated in Wolfram syndrome characterized by diabetes mellitus and optic atrophy. Herein, Ca(2+) dynamics were examined in WFS1-knockdown and -overexpressing HEK293 cells. Studies using ER-targeted Ca(2+)-sensitive photoprotein aequorin demonstrated WFS1 protein to positively modulate ER Ca(2+) levels by increasing the rate of Ca(2+) uptake. Furthermore, Ca(2+) imaging with Fura-2 showed the magnitude of the store-operated Ca(2+) entry to parallel WFS1 expression levels. These data indicate that WFS1 protein participates in the regulation of cellular Ca(2+) homeostasis, at least partly, by modulating the filling state of the ER Ca(2+) store.  相似文献   
27.
28.
Low density lipoprotein receptor (LDLR)-related protein 1 (LRP1/CD91) is one of the receptors of CCN2 that conducts endochondral ossification and cartilage repair. LRP1 is a well-known endocytic receptor, but its distribution among chondrocytes remains to be elucidated. We herein demonstrate for the first time that the distribution of LRP1 in chondrocytes except for hypertrophic chondrocytes in vivo and in vitro. Interestingly, the LRP1 levels were higher in mature chondrocytic HCS-2/8 and osteoblastic SaOS-2 than in other cells, whereas the other LDLR family members involved in ossification were detected at lower levels in HCS-2/8. It was interesting to note that in HCS-2/8, LRP1 was observed not only on the cell surface and in the cytoplasm, but also in the nucleus. Exogenously added CCN2 was incorporated into HCS-2/8, which was partially co-localized with LRP1, and targeted to the recycling endosomes and nucleus as well as the lysosomes. These findings suggest specific roles of LRP1 in cartilage biology.  相似文献   
29.
An automated approach for the rapid analysis of protein structure has been developed and used to study acid-induced conformational changes in human growth hormone. The labeling approach involves hydrogen/deuterium exchange (H/D-Ex) of protein backbone amide hydrogens with rapid and sensitive detection by mass spectrometry (MS). Briefly, the protein is incubated for defined intervals in a deuterated environment. After rapid quenching of the exchange reaction, the partially deuterated protein is enzymatically digested and the resulting peptide fragments are analyzed by liquid chromatography mass spectrometry (LC-MS). The deuterium buildup curve measured for each fragment yields an average amide exchange rate that reflects the environment of the peptide in the intact protein. Additional analyses allow mapping of the free energy of folding on localized segments along the protein sequence affording unique dynamic and structural information. While amide H/D-Ex coupled with MS is recognized as a powerful technique for studying protein structure and protein–ligand interactions, it has remained a labor-intensive task. The improvements in the amide H/D-Ex methodology described here include solid phase proteolysis, automated liquid handling and sample preparation, and integrated data reduction software that together improve sequence coverage and resolution, while achieving a sample throughput nearly 10-fold higher than the commonly used manual methods.  相似文献   
30.
Vitamin K is an essential nutrient and a cofactor for the carboxylation of specific glutamyl residues of proteins to γ-glutamyl residues, which activates osteocalcin related to bone formation. Among vitamin K homologues, menaquinone-4 (MK-4) is the most active biologically, up-regulating the gene expression of bone markers, and thus has been clinically used in the treatment of osteoporosis in Japan. Recently, we confirmed that MK-4 was converted from dietary phylloquinone (PK), and then accumulated in various tissues at high concentrations. This system should play an important role in biological functions including bone formation, however, the pathway by which MK-4 is converted remains unclear. In this study, we studied the mechanism of MK-4’s conversion with chemical techniques using deuterated analogues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号