首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   15篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2015年   5篇
  2014年   9篇
  2013年   10篇
  2012年   13篇
  2011年   19篇
  2010年   12篇
  2009年   9篇
  2008年   10篇
  2007年   19篇
  2006年   19篇
  2005年   16篇
  2004年   13篇
  2003年   19篇
  2002年   22篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1933年   1篇
排序方式: 共有233条查询结果,搜索用时 31 毫秒
51.
52.
53.
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol‐disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active‐site motif embedded in their thioredoxin‐like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol‐disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram‐negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.  相似文献   
54.
Evolutionary adaptations for the exploitation of nutritionally challenging or toxic host plants represent a major force driving the diversification of phytophagous insects. Although symbiotic bacteria are known to have essential nutritional roles for insects, examples of radiations into novel ecological niches following the acquisition of specific symbionts remain scarce. Here we characterized the microbiota across bugs of the family Pyrrhocoridae and investigated whether the acquisition of vitamin-supplementing symbionts enabled the hosts to diversify into the nutritionally imbalanced and chemically well-defended seeds of Malvales plants as a food source. Our results indicate that vitamin-provisioning Actinobacteria (Coriobacterium and Gordonibacter), as well as Firmicutes (Clostridium) and Proteobacteria (Klebsiella) are widespread across Pyrrhocoridae, but absent from the sister family Largidae and other outgroup taxa. Despite the consistent association with a specific microbiota, the Pyrrhocoridae phylogeny is neither congruent with a dendrogram based on the hosts'' microbial community profiles nor phylogenies of individual symbiont strains, indicating frequent horizontal exchange of symbiotic partners. Phylogenetic dating analyses based on the fossil record reveal an origin of the Pyrrhocoridae core microbiota in the late Cretaceous (81.2–86.5 million years ago), following the transition from crypt-associated beta-proteobacterial symbionts to an anaerobic community localized in the M3 region of the midgut. The change in symbiotic syndromes (that is, symbiont identity and localization) and the acquisition of the pyrrhocorid core microbiota followed the evolution of their preferred host plants (Malvales), suggesting that the symbionts facilitated their hosts'' adaptation to this imbalanced nutritional resource and enabled the subsequent diversification in a competition-poor ecological niche.  相似文献   
55.
Here we report a novel clade of secondary endosymbionts associated with insects and other arthropods. Seed bugs of the genus Nysius (Hemiptera: Lygaeidae) harbor the primary gammaproteobacterial symbiont Schneideria nysicola within a pair of bacteriomes in the abdomen. Our survey of Nysius species for their facultative bacterial associates consistently yielded a novel type of alphaproteobacterial 16S rRNA gene sequence in addition to those of Wolbachia. Diagnostic PCR survey of 343 individuals representing 24 populations of four Nysius species revealed overall detection rates of the alphaproteobacteria at 77.6% in Nysius plebeius, 87.7% in Nysius sp. 1, 81.0% in Nysius sp. 2, and 100% in Nysius expressus. Further survey of diverse stinkbugs representing 24 families, 191 species, and 582 individuals detected the alphaproteobacteria from an additional 12 species representing six families. Molecular phylogenetic analysis showed that the alphaproteobacteria from the stinkbugs form a distinct and coherent monophyletic group in the order Rickettsiales together with several uncharacterized endosymbionts from fleas and ticks. The alphaproteobacterial symbiont clade was allied to bacterial clades such as the endosymbionts of acanthamoebae, the endosymbionts of cnidarians, and Midichloria spp., the mitochondrion-associated endosymbionts of ticks. In situ hybridization and electron microscopy identified small filamentous bacterial cells in various tissues of N. plebeius, including the bacteriome and ovary. The concentrated localization of the symbiont cells at the anterior pole of oocytes indicated its vertical transmission route through host insect generations. The designation "Candidatus Lariskella arthropodarum" is proposed for the endosymbiont clade.  相似文献   
56.
Aims: To reveal the cause of the difference in activity of chitinase A from Vibrio proteolyticus and chitinase A from a strain of Vibrio carchariae (a junior synonym of Vibrio harveyi), we investigated the pH‐dependent activity of full‐length V. proteolyticus chitinase A and a truncated recombinant corresponding to the V. harveyi form of chitinase A. Methods and Results: After overexpression in Escherichia coli strain DH5α, the full‐length and truncated recombinant chitinases were purified by ammonium sulphate precipitation and anion exchange column chromatography. Chitinase activity was measured at various pH values using α‐crystal and colloidal chitins as the substrate. The pH‐dependent patterns of the relative specific activities for α‐crystal chitin differed between the full‐length and truncated recombinant chitinases, whereas those for colloidal chitin were similar to each other. Conclusion: The difference in the activity of V. proteolyticus chitinase A and V. harveyi chitinase A might be partly due to a change in the pH dependence of the chitinase activities against α‐crystal chitin, resulting from C‐terminal processing. Significance and Impact of Study: The present results are important findings for not only ecological studies on the genus Vibrio in association with survival strategies, but also phylogenetic studies.  相似文献   
57.
Parasporin-2, a new crystal protein derived from noninsecticidal and nonhemolytic Bacillus thuringiensis, recognizes and kills human liver and colon cancer cells as well as some classes of human cultured cells. Here we report that a potent proteinase K-resistant parasporin-2 toxin shows specific binding to and a variety of cytocidal effects against human hepatocyte cancer cells. Cleavage of the N-terminal region of parasporin-2 was essential for the toxin activity, whereas C-terminal digestion was required for rapid cell injury. Protease-activated parasporin-2 induced remarkable morphological alterations, cell blebbing, cytoskeletal alterations, and mitochondrial and endoplasmic reticulum fragmentation. The plasma membrane permeability was increased immediately after the toxin treatment and most of the cytoplasmic proteins leaked from the cells, whereas mitochondrial and endoplasmic reticulum proteins remained in the intoxicated cells. Parasporin-2 selectively bound to cancer cells in slices of liver tumor tissues and susceptible human cultured cells and became localized in the plasma membrane until the cells were damaged. Thus, parasporin-2 acts as a cytolysin that permeabilizes the plasma membrane with target cell specificity and subsequently induces cell decay.  相似文献   
58.
It has been suggested that macrophages and multinucleated giant cells are responsible for phagocytosis of resorbable calcium phosphate (CaP) compounds implanted in bone defects. However, function of macrophages around the CaP, if continuously exposed to various concentration of extracellular calcium ions ([Ca(2+)](o)), is still unknown. The present study showed that when resorbable octacalcium phosphate was implanted in mouse calvaria, macrophage-like cells were observed around the implant during bone formation. Then, experiments were designed to investigate whether secretion of bone morphogenetic protein 2 (BMP-2) is enhanced by [Ca(2+)](o) in a macrophage cell line (J774A.1) in vitro. The mRNA expression and the secretion of BMP-2 in J774A.1 cells were significantly increased when incubated in the medium with [Ca(2+)](o) up to 14mM. The promotion of mRNA expression was maintained even when incubated with a small amount of minute CaP crystals. The present results suggest that [Ca(2+)](o) above physiological concentration may stimulate macrophages to induce osteogenic cytokine, such as BMP-2, for bone formation by osteoblast.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号