首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1529篇
  免费   62篇
  国内免费   1篇
  2022年   12篇
  2021年   24篇
  2020年   8篇
  2019年   15篇
  2018年   15篇
  2017年   20篇
  2016年   30篇
  2015年   54篇
  2014年   70篇
  2013年   84篇
  2012年   84篇
  2011年   88篇
  2010年   56篇
  2009年   58篇
  2008年   97篇
  2007年   84篇
  2006年   110篇
  2005年   97篇
  2004年   103篇
  2003年   91篇
  2002年   92篇
  2001年   14篇
  2000年   14篇
  1999年   17篇
  1998年   14篇
  1997年   17篇
  1996年   16篇
  1995年   21篇
  1994年   11篇
  1993年   14篇
  1992年   10篇
  1991年   11篇
  1990年   5篇
  1989年   11篇
  1988年   12篇
  1986年   9篇
  1984年   6篇
  1983年   6篇
  1982年   11篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1974年   3篇
  1973年   4篇
  1938年   5篇
  1935年   6篇
  1934年   5篇
  1931年   7篇
  1930年   4篇
  1927年   3篇
排序方式: 共有1592条查询结果,搜索用时 15 毫秒
81.
82.
It has been reported that acute exposure to diethylstilbestrol (DES) induces apoptosis in the testis, and antioxidants play a role in preventing DES-induced tissue damage. In this study, the effect of chronic exposure to DES on the antioxidants was examined in the testis and liver. Eight-week old male ICR mice were treated subcutaneously with various doses of DES for 20 days. Morphologically apparent apoptotic changes, 4-hydroxy-2-nonenal-positive cells and TUNEL-positive DNA-fragmentation, were demonstrated in the testis, but were minimal in the liver. Activities of antioxidants such as glutathione (GSH) peroxidase and GSH S -transferase decreased in both the liver and testis. The activity of Mn-superoxide dismutase (SOD) decreased in the liver but increased in the testis. The activity of Cu, Zn-SOD decreased in the liver but was unchanged in the testis. On Western and Northern blots, gamma-glutamylcysteine synthetase ( γ-GCS), a rate limiting enzyme of GSH synthesis, was increased in the liver dependent on the dose of DES. However, the expression of γ-GCS was reduced in the testis. Since quinones, metabolites of DES, generate reactive oxygen species, which damage DNA, antioxidants are important to prevent the damage. The data suggest that antioxidant activities are impaired by DES, and the levels of GSH are related to DES-induced apoptosis in the testis.  相似文献   
83.
84.
Piscine DAX1 and SHP cDNAs with an open reading frame encoding 296 and 258 amino acid residues, respectively, as well as SHP partial gene fragment, were cloned from Nile tilapia. Phylogenetic analyses of DAX1s, SHPs, and homologous EST fragments indicate that DAX1 and SHP are conserved in gene structure and are present throughout vertebrates. A single band of approximately 1.4kb for DAX1 and of approximately 1.2kb for SHP was detected in the Northern blot analysis. Tissue distribution analysis by RT-PCR showed that fish DAX1 and SHP mRNAs are widely expressed in adult tissues, with the most abundant expression in gonads and liver, respectively. DAX1 and SHP were also detected in gonads of both sexes at 5-90 days after hatching (dah). However, the expression of DAX1 is weak at 5 and 10dah and then significantly up-regulated between 10 and 15dah, whereas the expression of SHP is moderate and consistent during the ontogeny.  相似文献   
85.
KPNAYKGKLPIGLWamide, a novel member of the GLWamide peptide family, was isolated from Hydra magnipapillata. The purification was monitored with a bioassay: contraction of the retractor muscle of a sea anemone, Anthopleura fuscoviridis. The new peptide, termed Hym-370, is longer than the other GLWamides previously isolated from H. magnipapillata and another sea anemone, A. elegantissima. The amino acid sequence of Hym-370 is six residues longer at its N-terminal than a putative sequence previously deduced from the cDNA encoding the precursor protein. The new longer isoform, like the shorter GLWamides, evoked concentration-dependent muscle contractions in both H. magnipapillata and A. fuscoviridis. In contrast, Hym-248, one of the shorter GLWamide peptides, specifically induced contraction of the endodermal muscles in H. magnipapillata. This is the first case in which a member of the hydra GLWamide family (Hym-GLWamides) has exhibited an activity not shared by the others. Polyclonal antibodies were raised to the common C-terminal tripeptide GLWamide and were used in immunohistochemistry to localize the GLWamides in the tissue of two species of hydra, H. magnipapillata and H. oligactis, and one species of sea anemone, A. fuscoviridis. In each case, nerve cells were specifically labeled. These results suggest that the GLWamides are ubiquitous among cnidarians and are involved in regulating the excitability of specific muscles.  相似文献   
86.
In this study, we developed a murine model of xerostomia to elucidate the mechanism of radiation-induced salivary gland dysfunction and determined the levels of nitric oxide (NO) in the salivary glands to assess its involvement in the salivary dysfunction induced by radiation. In addition, an inhibitor of NO synthesis was administered to the model in vivo, and its effect on saliva secretion was investigated. Salivary gland irradiation at a dose of 15 Gy caused a significant decrease in secretion compared to unirradiated salivary glands. There were no marked differences between the irradiated mice and unirradiated mice in water or food consumption or in body weight changes. The NO levels in the cultured salivary gland epithelial cells were increased by treatment with a combination of interferon gamma (Ifng), interleukin 1-beta (Il1b), and tumor necrosis factor alpha (Tnfa). Irradiation increased the NO level in the salivary gland tissue. The presence of N(G)-monomethyl-l-arginine acetate (l-NMMA), an inhibitor of NO synthesis, caused a decrease in the NO level in cultured salivary gland tissues after irradiation. Administration of l-NMMA to irradiated mice improved saliva secretion. These results suggest that excessive production of NO induced by radiation is involved in the formation of radiation-induced xerostomia. The finding that administration of an inhibitor of NO synthesis ameliorated the dysfunction of irradiated salivary glands indicates that NO plays a role as a mediator of the dry mouth symptoms that occur after irradiation.  相似文献   
87.
Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks   总被引:26,自引:0,他引:26  
It is poorly understood how apoptotic signals arising from DNA damage are transmitted to mitochondria, which release apoptogenic factors into the cytoplasm that activate downstream destruction programs. Here, we identify histone H1.2 as a cytochrome c-releasing factor that appears in the cytoplasm after exposure to X-ray irradiation. While all nuclear histone H1 forms are released into the cytoplasm in a p53-dependent manner after irradiation, only H1.2, but not other H1 forms, induced cytochrome c release from isolated mitochondria in a Bak-dependent manner. Reducing H1.2 expression enhanced cellular resistance to apoptosis induced by X-ray irradiation or etoposide, but not that induced by other stimuli including TNF-alpha and UV irradiation. H1.2-deficient mice exhibited increased cellular resistance in thymocytes and the small intestine to X-ray-induced apoptosis. These results indicate that histone H1.2 plays an important role in transmitting apoptotic signals from the nucleus to the mitochondria following DNA double-strand breaks.  相似文献   
88.
89.
90.
To examine whether alpha and beta tubulin are glycoproteins, we used a pyridylamino labeling method and a monoclonal antibody, SG3-1, raised against NeuAcalpha2-3Gal structure. Alpha and beta tubulin from both pig brain and HeLa cells were positive for the SG3-1 antibody by immunoblot assay. Sialidase treatment reduced the reactivity of the SG3-1 antibody to alpha and beta tubulin molecules. N-linked oligosaccharide analysis also showed that alpha and beta tubulin are glycosylated. Moreover, immunofluorescence analysis showed that the filamentous structure recognized by the SG3-1 antibody was overlapped with microtubules, especially in the vicinity of the nucleus. These results indicate that alpha and beta tubulin are glycosylated with sialyloligosaccharides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号