首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2936篇
  免费   159篇
  国内免费   1篇
  3096篇
  2022年   23篇
  2021年   38篇
  2020年   16篇
  2019年   19篇
  2018年   29篇
  2017年   28篇
  2016年   42篇
  2015年   83篇
  2014年   107篇
  2013年   206篇
  2012年   140篇
  2011年   143篇
  2010年   92篇
  2009年   98篇
  2008年   155篇
  2007年   155篇
  2006年   175篇
  2005年   155篇
  2004年   159篇
  2003年   160篇
  2002年   136篇
  2001年   73篇
  2000年   61篇
  1999年   62篇
  1998年   35篇
  1997年   39篇
  1996年   30篇
  1995年   26篇
  1994年   26篇
  1993年   26篇
  1992年   41篇
  1991年   59篇
  1990年   37篇
  1989年   34篇
  1988年   45篇
  1987年   26篇
  1986年   32篇
  1985年   34篇
  1984年   20篇
  1983年   19篇
  1982年   24篇
  1981年   16篇
  1980年   17篇
  1979年   11篇
  1978年   11篇
  1977年   18篇
  1975年   18篇
  1974年   10篇
  1973年   18篇
  1931年   7篇
排序方式: 共有3096条查询结果,搜索用时 15 毫秒
41.
Administration of phalloidin in vivo to rats causes marked changes in the distribution of actin and myosin in hepatocytes, which accompanies reduced bile flow. We have found that in hepatocytes treated with phalloidin for 3 and 7 days, cellular myosin content increased about 1.5-fold and 4.7-fold, respectively. In addition, total cell protein content and several marker enzyme activities were also elevated by 30-120% depending on the duration of phalloidin treatment. These observations allow us to speculate that phalloidin somehow elicits inhibition of cellular protein degradation, which results in the increase of these protein levels. To examine this possibility further, we analyzed leupeptin-induced density shift of phagolysosomes. In normal liver, the injection of leupeptin/E64c caused an increase in the density of both heterolysosomes and autolysosomes, due to retarded digestion of sequestered proteins as a result of the inhibition of lysosomal cathepsins. Accumulation, in these denser autolysosomes, of lactic dehydrogenase, pyruvate kinase, aldolase, and myosin was demonstrated by enzyme assays and immunoblot analysis. In the phalloidin-treated liver, the increase in the density of autolysosomes and the accumulation of above cytoplasmic enzymes were markedly inhibited. However, phalloidin did not affect the shift in the density of heterolysosomes. From these data, we concluded that autolysosome formation was specifically hindered in phalloidin-treated rat hepatocytes, which results in the reduction of autophagic protein degradation and eventual increase in intracellular protein levels.  相似文献   
42.
Summary Lipase from Rhizopus delemar was immobilized by entrapment with photo-crosslinkable resin prepolymers or urethane prepolymers or by binding to various types of porous silica beads. The immobilized lipase preparations thus obtained were examined for their activity in converting olive oil to an interesterified fat (cacao butter-like fat), whose oleic acid moieties at 1- and 3-positions were replaced with stearic acid moieties, in the reaction solvent n-hexane. Although all of the immobilized preparations exhibited some activity, lipase adsorbed on Celite and then entrapped with a hydrophobic photo-crosslinkable resin prepolymer showed the highest activity, about 75% of that of lipase simply adsorbed onto Celite. Entrapment markedly enhanced the operational stability of lipase.Dedicated to Professor H. Holzer, Freiburg University, on his 60th birthday (June 13, 1981)  相似文献   
43.
44.
Both NADPH- and ascorbic acid-dependent lipid peroxidations were inhibited by spermine, the degree of inhibition being greater with the former peroxidation. The effective concentration of spermine required for inhibition was higher when larger amounts of microsomes were used. However, the activities of NADPH-cytochrome c reductase and NADPH-peroxidase were not influenced by spermine. These results suggest that spermine inhibits lipid peroxidation by binding to phospholipids in the microsomes.  相似文献   
45.
It is shown that rat liver isoleucyl-tRNA formation in the presence of Mg2+ is inhibited by poly(G), poly(I) or ribosomes and that this inhibition is prevented by polyamines. The inhibition is found to be noncompetitive with respect to tRNA.  相似文献   
46.
The activities of ribonucleases (RNase HS and RNase A), which hydrolyze ribonucleic acid at linkages attached to pyrimidine nucleotides were stimulated by polyamines, while the activities of ribonucleases (RNase T1 and RNase M), which attack ribonucleic acid at linkages attached to purine nucleotides were not influenced by polyamines. In the presence of polyamines, the cleavage of C5′-O-P linkages adjacent to cytosine nucleotide was stimulated, while the cleavage of C5′-O-P linkages adjacent to uracil nucleotides was inhibited slightly. The effect of polyamines on the activities of ribonucleases occured through the binding of the polyamines to nucleic acid.  相似文献   
47.
48.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
49.
The peptidic Y1 antagonist 1229U91 and the non-peptidic antagonist J-104870 have high binding affinities for the human Y1 receptor. These Y1 antagonists show anorexigenic effects on NPY-induced feeding in rats, although they have completely different structures and molecular sizes. To identify the binding sites of these ligands, we substituted amino acid residues of the human Y1 receptor with alanine and examined the abilities of the mutant receptors to bind the radio-labeled ligands. Alanine substitutions, F98A, D104A, T125A, D200A, D205A, L215A, Q219A, L279A, F282A, F286A, W288A and H298A, in the human Y1 receptor lost their affinity for the peptide agonist PYY, but not for 1229U91 and J-104870, while L303A and F173A lost affinity for 1229U91 and J-104870, respectively. N283A retained its affinity for 1229U91, but not for PYY and J-104870. Y47A and N299A retained their affinity for J-104870, but not for PYY and 1229U91. W163A and D287A showed no affinity for any of the three ligands. Taken together, these data indicate that the binding sites of 1229U91 are widely located in the shallow region of the transmembrane (TM) domain of the receptor, especially TM1, TM6 and TM7. In contrast, J-104870 recognized the pocket formed by TM4, TM5 and TM6, based on the molecular modeling of the Y1 receptor and J-104870 complex. In conclusion, 1229U91 and J-104870 have high affinities for Y1 receptors using basically different binding sites. D287 of the common binding site in the TM6 domain could be crucial for the binding of Y1 antagonists.  相似文献   
50.
To study the precise mechanism of cytotoxic activity of PGD2 or Δ12-PGJ2 (a biological active metabolite of PGD2), we examined the effect of various compounds on PGD2 or Δ12-PGJ2 cytottoxic, using a human neuroblastoma cell line (NCG). Cycloheximide (CHM) specifically protected PGD2 cytotoxicity on NCG cells. When Δ12-PGJ2 was tested, CHM exhibited a similar rescue effect. Puromycin, mitomycin C, and α-amanitin did not affect PGD2 or Δ12-PGJ2 cytotoxicity. Emetine showed a variable and no consistent rescue effect CHM may have been active at the primary site where PGD2 or Δ12-PGJ2 exerts its cytotoxicity. This is the first report indicating that CHM reduces the cytotoxicity induced by PGD2 or Δ12-PGJ2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号