首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3438篇
  免费   184篇
  2022年   14篇
  2021年   14篇
  2019年   22篇
  2018年   41篇
  2017年   30篇
  2016年   54篇
  2015年   82篇
  2014年   111篇
  2013年   190篇
  2012年   233篇
  2011年   190篇
  2010年   138篇
  2009年   104篇
  2008年   200篇
  2007年   188篇
  2006年   181篇
  2005年   193篇
  2004年   170篇
  2003年   181篇
  2002年   168篇
  2001年   51篇
  2000年   43篇
  1999年   50篇
  1998年   46篇
  1997年   57篇
  1996年   29篇
  1995年   36篇
  1994年   22篇
  1993年   35篇
  1992年   46篇
  1991年   48篇
  1990年   51篇
  1989年   56篇
  1988年   35篇
  1987年   43篇
  1986年   41篇
  1985年   52篇
  1984年   37篇
  1983年   29篇
  1982年   36篇
  1981年   37篇
  1980年   28篇
  1979年   21篇
  1978年   28篇
  1977年   17篇
  1976年   21篇
  1975年   18篇
  1972年   13篇
  1970年   11篇
  1968年   12篇
排序方式: 共有3622条查询结果,搜索用时 15 毫秒
61.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   
62.
63.
The photoactive reaction center (RC) complex from the greensulfur bacterium Chlorobium limicola f. thiosulfatophilum, strainLarsen, was isolated after solubilization and ammonium sulfatefractionation followed by ion-exchange chromatography. The spectrumof the complex was almost identical with that of the similarRC complex isolated by Feiler et al. [(1992) Biochemistry 31:2608–2614] except for the presence of cytochrome c551instead of c553 in the latter study. A molecular ratio of BChla to P840 of the isolated RC complex was assayed to be 25–35.SDSPAGE analysis revealed that the isolated complex containedthree major polypeptides with apparent molecular masses of 68,41 and 21 kDa, respectively. The 21-kDa polypeptide was identifiedto be a heme-binding protein by staining the gel for peroxidaseactivity. The cytochrome c551 was oxidized by flash light ina biphasic manner with half times of 90 and 390 µs, respectively,that coincided with the reduction half times of P840+. Threedistinct iron-sulfur centers assigned to FA, FB and Fx, respectively,from their g-values were detected by EPR spectroscopy at cryogenictemperature. These results suggest that the present preparationcontains a minimal functional unit of the RC of this bacterium,and that this complex appears to lie on a evolutionary linebetween RC's of purple bacteria and photosystem I. (Received August 18, 1992; Accepted October 28, 1992)  相似文献   
64.
Twenty-four weanling male Wistar rats were divided into four groups fed diets containing adequate or deficient levels of selenium (0.5 ppm [+ Se] or <0.02 ppm [−Se] and protein (15% [+Pro] or 5% [−Pro]), but adequate levels of all other nutrients for 4 wk to determine the effects of Se deficiency and protein deficiency on tissue Se and glutathione peroxidase (GSHPx) activity in rats. Plasma, heart, liver, and kidney Se and GSHPx were significantly lower in Se-deficient groups in relation to Se-sufficient groups. In Se-deficient groups, Se and GSHPx were significantly higher in −Se−Pro rats in heart, liver, and kidney. Data analysis showed that there were significant interaction effects between dietary Se and protein on Se and GSHPx of rats. It is assumed that under the condition of Se deficiency. a low level of protein may decrease Se and GSHPx utilization, increase GSHPx synthesis, and result in Se redistribution. This could account for high levels of Se and GSHPx in the −Se−Pro rats compared to −Se+Pro rats.  相似文献   
65.
Abstract: The presynaptic regulation of amino acid release from nerve terminals was investigated using synaptosomes prepared from the rat spinal cord. The basal releases of endogenous glutamate (Glu), aspartate (Asp), and γ-amino-butyric acid (GABA) were 34.6, 21.5, and 10.0 pmol/min/mg of protein, respectively. Exposure to a depolarizing concentration of KCl (30 m M ) evoked 2.7-, 1.5-, and 2.9-fold increases in Glu, Asp, and GABA release, respectively. Clonidine reduced the K+-evoked overflow of Glu to 56% of the control overflow with a potency (IC50) of 17 n M , but it did not affect K+-evoked overflow of Asp, GABA, and their basal releases. Similarly, noradrenaline inhibited the K+-evoked overflow of Glu, although phenylephrine and isoproterenol showed no effect. The inhibitory effect of clonidine was counteracted by α2-adrenoceptor antagonists, rauwolscine, yohimbine, and idazoxan, regardless of the imidazoline structures. Because Glu is considered a neurotransmitter of primary afferents that transmit both nociceptive and nonnociceptive stimuli in the spinal cord, these data suggest that part of Glu release may be regulated by the noradrenergic system through α2 adrenoceptors localized on the primary afferent terminals.  相似文献   
66.
67.
68.
69.
A genomic fragment containing the dihydroflavonol 4-reductase B (DFR-B) gene was cloned from the sweet potato (Ipomoea batatas) and its nucleotide sequence was analyzed. The exons and flanking regions were highly homologous to those of previously reported DFR-B genes of the Japanese morning glory, whereas the introns and the intergenic region were less conserved. In addition to the sequences of three miniature inverted-repeat transposable elements (MITEs) and one direct repeat previously reported in the DFR-B gene of Japanese morning glory, two mobile element-like sequences were newly identified in the sweet potato DFR-B gene. At least four allelic sequences were found to exist by amplification of the DFR-B gene from various sweet potato cultivars. One of these allelic sequences had a 2-kb deletion in the intergenic region and was observed in the cultivars with high anthocyanin content in their storage roots.  相似文献   
70.
Pertussis toxin-insensitive GTP-binding protein was observed to be involved in prostaglandin F2α(PGF2α)-induced phosphoinositide metabolism in Chinese hamster ovary (CHO) cells transfected with PGF2α receptor cDNA (CHO-PGF2α·R cells) (Ito, S. et al. Biochem. Biophys. Res. Commun. 200: 756, 1994). In the present study, we investigated PGF2α-induced PLD activation in CHO-PGF2α·R cells. PLD activation was examined by measuring the production of [3H]phosphatidylbutanol ([3H]PBut), a specific product of the PLD-catalyzed transphosphatidylation reaction. PGF2α-induced [3H]PBut formation was concentration-dependent with the maximal level obtained at 1 μM PGF2α. The maximal [3H]PBut formation was observed at 2 min after addition of PGF2α. Depletion of extracellular Ca2+ with EGTA suppressed PGF2α-induced PLD activation by 50%. PKC inhibitors Ro31–8425 and calphostin C inhibited PGF2α-induced [3H]PBut formation by 50%. PTK inhibitors genistein and herbimycin A failed to inhibit PGF2α-induced PLD activation. A combination of maximal effective concentrations of PGF2α (1 μM) and PMA (100 nM) enhanced PLD activation in an additive manner. Pretreatment of the cells with PMA for 2 h down-regulated PKCα and decreased PGF2α-induced PLD activation. These results suggest that PLD activation by PGF2α is mediated by both PKC-dependent and -independent pathways and that PKCα is involved in the former pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号