首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2002篇
  免费   89篇
  国内免费   1篇
  2021年   16篇
  2019年   11篇
  2018年   15篇
  2017年   25篇
  2016年   12篇
  2015年   55篇
  2014年   55篇
  2013年   109篇
  2012年   112篇
  2011年   118篇
  2010年   57篇
  2009年   56篇
  2008年   104篇
  2007年   81篇
  2006年   99篇
  2005年   106篇
  2004年   119篇
  2003年   91篇
  2002年   119篇
  2001年   56篇
  2000年   62篇
  1999年   55篇
  1998年   24篇
  1997年   15篇
  1996年   13篇
  1995年   20篇
  1994年   17篇
  1993年   19篇
  1992年   47篇
  1991年   38篇
  1990年   40篇
  1989年   40篇
  1988年   27篇
  1987年   30篇
  1986年   22篇
  1985年   22篇
  1984年   17篇
  1983年   24篇
  1982年   14篇
  1981年   14篇
  1980年   19篇
  1979年   15篇
  1978年   10篇
  1977年   6篇
  1975年   6篇
  1974年   9篇
  1971年   5篇
  1970年   5篇
  1968年   5篇
  1967年   9篇
排序方式: 共有2092条查询结果,搜索用时 15 毫秒
951.
To elucidate the actions of Draper, a receptor responsible for the phagocytic clearance of apoptotic cells in Drosophila, we isolated proteins that bind to the extracellular region of Draper using affinity chromatography. One of those proteins has been identified to be an uncharacterized protein called Drosophila melanogaster calcium-binding protein 1 (DmCaBP1). This protein containing the thioredoxin-like domain resided in the endoplasmic reticulum and seemed to be expressed ubiquitously throughout the development of Drosophila. DmCaBP1 was externalized without truncation after the induction of apoptosis somewhat prior to chromatin condensation and DNA cleavage in a manner dependent on the activity of caspases. A recombinant DmCaBP1 protein bound to both apoptotic cells and a hemocyte-derived cell line expressing Draper. Forced expression of DmCaBP1 at the cell surface made non-apoptotic cells susceptible to phagocytosis. Flies deficient in DmCaBP1 expression developed normally and showed Draper-mediated pruning of larval axons, but a defect in the phagocytosis of apoptotic cells in embryos was observed. Loss of Pretaporter, a previously identified ligand for Draper, did not cause a further decrease in the level of phagocytosis in DmCaBP1-lacking embryos. These results collectively suggest that the endoplasmic reticulum protein DmCaBP1 is externalized upon the induction of apoptosis and serves as a tethering molecule to connect apoptotic cells and phagocytes for effective phagocytosis to occur.  相似文献   
952.
Autophagy is a highly conserved bulk protein degradation pathway responsible for the turnover of long-lived proteins, disposal of damaged organelles, and clearance of aggregate-prone proteins. Thus, inactivation of autophagy results in cytoplasmic protein inclusions, which are composed of misfolded proteins and excess accumulation of deformed organelles, leading to liver injury, diabetes, myopathy, and neurodegeneration. Although autophagy has been considered non-selective, growing lines of evidence indicate the selectivity of autophagy in sorting vacuolar enzymes and in the removal of aggregate-prone proteins, unwanted organelles and microbes. Such selectivity by autophagy enables diverse cellular regulations, similar to the ubiquitin-proteasome pathway. In this review, we introduce the selective turnover of the ubiquitin- and LC3-binding protein ‘p62’ through autophagy and discuss its physiological significance.  相似文献   
953.
954.
MRSA causes a wide diversity of diseases, ranging from benign skin infections to life‐threatening diseases, such as sepsis. However, there have been few reports of the pathophysiology and mechanisms of sepsis resulting from the gut‐derived origin of MRSA. Therefore, we established a murine model of gut‐derived sepsis with MRSA and factors of MRSA sepsis that cause deterioration. We separated mice into four groups according to antibiotic treatment as follows: (i) ABPC 40 mg/kg; (ii) CAZ 80 mg/kg; (iii) CAZ 80 mg/kg + endotoxin 10 μg/mouse; and (iv) saline‐treated control groups. Gut‐derived sepsis was induced by i.p. injection of cyclophosphamide after colonization of MRSA strain 334 in the intestine. After the induction of sepsis, significantly more CAZ‐treated mice survived compared with ABPC‐treated and control groups. MRSA were detected in the blood and liver among all groups. Endotoxin levels were significantly lower in the CAZ‐treated group compared to other groups. Inflammatory cytokine levels in the serum were lower in the CAZ‐treated group compared to other groups. Fecal culture showed a lower level of colonization of E. coli in the CAZ‐treated group compared to other groups. In conclusion, we found that CAZ‐treatment ameliorates infection and suppresses endotoxin level by the elimination of E. coli from the intestinal tract of mice. However, giving endotoxin in the CAZ‐treated group increased mortality to almost the same level as in the ABPC‐treated group. These results suggest endotoxin released from resident E. coli in the intestine is involved in clinical deterioration resulting from gut‐derived MRSA sepsis.  相似文献   
955.
Molecular and Cellular Biochemistry - Human dermal fibroblast proliferation plays an important role in skin wound healing, and electrical stimulation (ES) promotes skin wound healing. Although the...  相似文献   
956.
Identification of gastric tumor-initiating cells (TICs) is essential to explore new therapies for gastric cancer patients. There are reports that gastric TICs can be identified using the cell surface marker CD44 and that they form floating spheres in culture, but we could not obtain consistent results with our patient-derived tumor xenograft (PDTX) cells. We thus searched for another marker for gastric TICs, and found that CD49fhigh cells from newly-dissected gastric cancers formed tumors with histological features of parental ones while CD49flow cells did not when subcutaneously injected into immunodeficient mice. These results indicate that CD49f, a subunit of laminin receptors, is a promising marker for human gastric TICs. We established a primary culture system for PDTX cells where only CD49fhigh cells could grow on extracellular matrix (ECM) to form ECM-attaching spheres. When injected into immunodeficient mice, these CD49fhigh sphere cells formed tumors with histological features of parental ones, indicating that only TICs could grow in the culture system. Using this system, we found that some sphere-forming TICs were more resistant than gastric tumor cell lines to chemotherapeutic agents, including doxorubicin, 5-fluorouracil and doxifluridine. There was a patient-dependent difference in the tumorigenicity of sphere-forming TICs and their response to anti-tumor drugs. These results suggest that ECM plays an essential role for the growth of TICs, and that this culture system will be useful to find new drugs targeting gastric TICs.  相似文献   
957.
Over the last century, human activity has caused significant changes to the activity patterns of many wildlife species. The wild boar is one species known to change its activity pattern with the intensity of human disturbance. We conducted camera trap surveys in two study sites, Shingo and Himuro, in Tochigi, central Japan. We investigated effects of two types of human disturbance on the activity pattern of a wild boar population: ‘direct’ disturbance related to hunting activity and ‘indirect’ disturbance related to daily human activity. In the hunting season, relative abundance indices (RAI) of wild boars significantly decreased, and the proportion of activity at night increased compared with the nonhunting season. RAI of wild boars at night decreased with increasing distance from the settlement, while RAI of wild boars during the day did not. Relative proportion of activity at night was higher in cameras at 0–200 m from the settlements, while no significant pattern was found in cameras far from settlements. Both direct and indirect effects of human activity had a significant effect on the activity pattern of wild boars. A decrease in human activity may result in the rapid expansion of wild boar populations, and re-evaluation of the human factor is important for more intelligent management of wild boar populations and to solve the human–wildlife conflict.  相似文献   
958.
Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol–gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol–gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol–gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol–gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol–gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.  相似文献   
959.
Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs.  相似文献   
960.
Cellulosic biomass is available for the production of biofuel, with saccharification of the cell wall being a key process. We investigated whether alteration of arabinoxylan, a major hemicellulose in monocots, causes an increase in saccharification efficiency. Arabinoxylans have β-1,4-D-xylopyranosyl backbones and 1,3- or 1,4-α-l-arabinofuranosyl residues linked to O-2 and/or O-3 of xylopyranosyl residues as side chains. Arabinose side chains interrupt the hydrogen bond between arabinoxylan and cellulose and carry an ester-linked feruloyl substituent. Arabinose side chains are the base point for diferuloyl cross-links and lignification. We analyzed rice plants overexpressing arabinofuranosidase (ARAF) to study the role of arabinose residues in the cell wall and their effects on saccharification. Arabinose content in the cell wall of transgenic rice plants overexpressing individual ARAF full-length cDNA (OsARAF1-FOX and OsARAF3-FOX) decreased 25% and 20% compared to the control and the amount of glucose increased by 28.2% and 34.2%, respectively. We studied modifications of cell wall polysaccharides at the cellular level by comparing histochemical cellulose staining patterns and immunolocalization patterns using antibodies raised against α-(1,5)-linked l-Ara (LM6) and β-(1,4)-linked d-Xyl (LM10 and LM11) residues. However, they showed no visible phenotype. Our results suggest that the balance between arabinoxylan and cellulose might maintain the cell wall network. Moreover, ARAF overexpression in rice effectively leads to an increase in cellulose accumulation and saccharification efficiency, which can be used to produce bioethanol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号