首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3243篇
  免费   260篇
  国内免费   2篇
  2022年   17篇
  2021年   28篇
  2019年   20篇
  2018年   32篇
  2017年   27篇
  2016年   41篇
  2015年   78篇
  2014年   95篇
  2013年   220篇
  2012年   157篇
  2011年   170篇
  2010年   103篇
  2009年   95篇
  2008年   185篇
  2007年   158篇
  2006年   150篇
  2005年   186篇
  2004年   171篇
  2003年   138篇
  2002年   155篇
  2001年   99篇
  2000年   77篇
  1999年   98篇
  1998年   55篇
  1997年   41篇
  1996年   37篇
  1995年   32篇
  1994年   28篇
  1993年   27篇
  1992年   67篇
  1991年   64篇
  1990年   68篇
  1989年   53篇
  1988年   35篇
  1987年   37篇
  1986年   50篇
  1985年   29篇
  1984年   34篇
  1983年   29篇
  1982年   21篇
  1981年   27篇
  1980年   19篇
  1979年   28篇
  1978年   21篇
  1976年   16篇
  1975年   18篇
  1971年   17篇
  1970年   17篇
  1969年   20篇
  1967年   15篇
排序方式: 共有3505条查询结果,搜索用时 15 毫秒
931.
Mammalian male germ cells might be generally thought to have infinite proliferative potential based on their life-long production of huge numbers of sperm. However, there has been little substantial evidence that supports this assumption. In the present study, we performed serial transplantation of spermatogonial stem cells to investigate if they expand by self-renewing division following transplantation. The transgenic mouse carrying the Green fluorescent protein gene was used as the donor cell source that facilitated identification and recollection of colonized donor germ cells in the recipient testes. The established colonies of germ cells in the recipient testes were collected and transplanted to new recipients. This serial transplantation of spermatogonial stem cells repopulated the recipient testes, which were successfully performed sequentially up to four times from one recipient to the next. The incubation periods between two sequential transplantations ranged from 55 to 373 days. During these passages, the spermatogonial stem cells showed constant activity to form spermatogenic colonies in the recipient testis. They continued to increase in number for more than a year following transplantation. Colonization efficiency of spermatogonial stem cells was determined to be 4.25% by using Sl/Sl(d) mice as recipients that propagated only undifferentiated type A spermatogonia in their testes. Based on the colonization efficiency, one colony-forming activity was assessed to equate to about 20 spermatogonial stem cells. The spermatogonial stem cells were estimated to expand over 50-fold in 100 days in this experiment.  相似文献   
932.
Recent studies have demonstrated that GnRH-analogues can stimulate regeneration of spermatogenesis of rats when administered after testicular damages. Although the mechanism of this phenomenon has not been elucidated yet, stem cell factor (SCF) produced by Sertoli cells was proposed to mediate the effects of GnRH-analogues on spermatogonial proliferation and/or survival. In the present study, we quantitatively evaluated the proliferation of spermatogonia and addressed whether SCF mediates the effect of GnRH-analogue on spermatogonial proliferation, using a novel approach combining spermatogonial transplantation and laser confocal microscopic observation. In the first experiment, using wild-type mice as recipients for spermatogonial transplantation, the number of donor spermatogonia per 100 Sertoli cells in each spermatogenic colony was significantly higher in the experimental group of mice treated with leuprorelin, a GnRH-agonist, than that of the control group at 4 and 5 wk after transplantation. In the second experiment, Steel/Steeldickie (Sl/Sld) mutant mice, which lack expression of membrane bound form SCF, were used as recipients. As seen in the first experiment, the number of undifferentiated spermatogonia was significantly higher in leuprorelin-treated than in the control group. Since undifferentiated spermatogonia do not express the receptor of SCF, the present study clearly demonstrates that neither membrane-bound nor secreted forms of SCF are involved in the mechanism of GnRH-analogue's effect on spermatogonial proliferation and/or survival.  相似文献   
933.
The endoplasmic reticulum (ER) enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which converts HMG-CoA to mevalonate, catalyzes the ratelimiting step in cholesterol biosynthesis. Because this mevalonate pathway also produces several non-sterol isoprenoid compounds, the level of HMG-CoA reductase activity may coordinate many cellular processes and functions. We used gene targeting to knock out the mouse HMG-CoA reductase gene. The heterozygous mutant mice (Hmgcr+/-) appeared normal in their development and gross anatomy and were fertile. Although HMG-CoA reductase activities were reduced in Hmgcr+/- embryonic fibroblasts, the enzyme activities and cholesterol biosynthesis remained unaffected in the liver from Hmgcr+/- mice, suggesting that the haploid amount of Hmgcr gene is not rate-limiting in the hepatic cholesterol homeostasis. Consistently, plasma lipoprotein profiles were similar between Hmgcr+/- and Hmgcr+/+ mice. In contrast, the embryos homozygous for the Hmgcr mutant allele were recovered at the blastocyst stage, but not at E8.5, indicating that HMG-CoA reductase is crucial for early development of the mouse embryos. The lethal phenotype was not completely rescued by supplementing the dams with mevalonate. Although it has been postulated that a second, peroxisome-specific HMG-CoA reductase could substitute for the ER reductase in vitro, we speculate that the putative peroxisomal reductase gene, if existed, does not fully compensate for the lack of the ER enzyme at least in embryogenesis.  相似文献   
934.
The effects of light on actin-dependent cytoplasmic motility in epidermal cells of green leaves of the aquatic angiosperm Vallisneria gigantea were investigated quantitatively using a custom-made dynamic image analyzer. Cytoplasmic motility was measured by monitoring changes in the brightness of individual pixels on digitized images taken sequentially under infrared light. Acceleration and deceleration of cytoplasmic motility were regulated photoreversibly by type II phytochrome(s). This phytochrome-dependent induction of cytoplasmic motility did not occur uniformly in cytoplasm but took place as scattered patches in which no particular organelles, including nucleus, existed. The induction became detectable at 2.5 s after the start of irradiation with pulsed red light. In cells exposed to microbeam irradiation, cytoplasmic motility was induced only in sites in the cytoplasm that were irradiated directly, whereas nonirradiated neighboring areas were unaffected. The effect was short-lived, disappearing within a few minutes, and no signal was transmitted from an irradiated cell to its neighbors. Anti-phytochrome antibody-responsive protein(s) was detectable in the leaf extract by immunoblot and zinc blot analyses and in cryosections of the epidermis by immunocytochemistry. Although the phytochrome-dependent cytoplasmic motility was blocked by exogenously applied latrunculin B or cytochalasins, treatment of the dark-adapted cells with Ca(2+)-chelating reagents induced the cytoplasmic motility. We have proposed a model for the phytochrome regulation of cytoplasmic motility as one of the earliest responses to a light stimulus.  相似文献   
935.
Here we show that LNCaP, which is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, becomes sensitive to TRAIL after overexpression of full-length, wild-type BAD (BAD WT). TRAIL induces caspase-dependent cleavage of BAD WT that results in generation of a M(r) 15,000 protein. LNCaP stably expressing truncated BAD (tBAD) and cells expressing mutated BAD at the caspase cleavage site were less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Cytochrome c and Smac/DIABLO release from mitochondria into cytosol was found after TRAIL treatment only in cells overexpressing BAD WT. Furthermore, differences in phosphorylation of serine residues for BAD WT and tBAD were identified. BAD WT was phosphorylated at positions S136 and S155, whereas tBAD was phosphorylated at positions S112, S136, and S155. LNCaP stably expressing BAD mutated at serine 112 to alanine was less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Lastly, recombinant BAD cleaved by caspase-3 is a more potent inducer of cytochrome c and Smac/DIABLO release than BAD WT. In summary, BAD-mediated sensitivity of LNCaP to TRAIL depends on the phosphorylation status of BAD WT and tBAD.  相似文献   
936.
A DNA analysis platform called 'Bead-array' is presented and its features when used in hybridization detection are shown. In 'Bead-array', beads of 100- micro m diameter are lined in a determined order in a capillary. Each bead is conjugated with DNA probes, and can be identified by its order in the capillary. This probe array is easily produced by just arraying beads conjugated with probes into the capillary in a fixed order. The hybridization is also easily completed by introducing samples (1-300 micro l) into the capillary with reciprocal flow. For hybridization detection, as little as 1 amol of fluorescent-labeled oligo DNA was detected. The hybridization reaction was completed in 1 min irrespective of the amount of target DNA. When the number of target molecules was smaller than that of probe molecules on the bead, 10 fmol, almost all targets were captured on the bead. 'Bead-array' enables reliable and reproducible measurement of the target quantity. This rapid and sensitive platform seems very promising for various genetic testing tasks.  相似文献   
937.
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   
938.
Effects of hindlimb unloading during the first 3 months after birth on the development of soleus muscle fibers were studied in rats. The mean absolute weigh and cross-sectional area of whole soleus muscle in the unloaded rats were -1/3 and 1/4 of those in the controls, respectively. But the unloading did not affect the lengths of muscle, at 90 degrees of ankle joint angle, and of muscle fibers sampled from tendon to tendon, and the total sarcomere number. Since the total number of fibers in soleus was not affected either, the inhibited increase of muscle mass following unloading was mainly due to the smaller CSA of individual fibers. Numbers of both myonuclei and satellite cells were significantly less in unloaded than control rats. The % distribution of fibers expressing pure type I myosin heavy chain was significantly less in unloaded than controls (-23 %). Further, muscle fibers with multiple innervation were noted in the unloaded rats. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading and that the growth-associated increase in fiber number may be genetically programmed.  相似文献   
939.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   
940.
Sphingomonas paucimobilis SYK-6 degrades ferulic acid to vanillin, and it is further metabolized through the protocatechuate 4,5-cleavage pathway. We obtained a Tn5 mutant of SYK-6, FA2, which was able to grow on vanillic acid but not on ferulic acid. A cosmid which complemented the growth deficiency of FA2 on ferulic acid was isolated. The 5.2-kb BamHI-EcoRI fragment in this cosmid conferred the transformation activity of ferulic acid to vanillin on Escherichia coli host cells. A sequencing analysis revealed the genes ferB and ferA in this fragment; these genes consist of 852- and 2,127-bp open reading frames, respectively. The deduced amino acid sequence of ferB showed 40 to 48% identity with that of the feruloyl-coenzyme A (CoA) hydratase/lyase genes of Pseudomonas and Amycolatopsis ferulic acid degraders. On the other hand, the deduced amino acid sequence of ferA showed no significant similarity to the feruloyl-CoA synthetase genes of other ferulic acid degraders. However, the deduced amino acid sequence of ferA did show 31% identity with pimeloyl-CoA synthetase of Pseudomonas mendocina 35, which has been classified as a new superfamily of acyl-CoA synthetase (ADP forming) with succinyl-CoA synthetase (L. B. Sánchez, M. Y. Galperin, and M. Müller, J. Biol. Chem. 275:5794-5803, 2000). On the basis of the enzyme activity of E. coli carrying each of these genes, ferA and ferB were shown to encode a feruloyl-CoA synthetase and feruloyl-CoA hydratase/lyase, respectively. p-coumaric acid, caffeic acid, and sinapinic acid were converted to their corresponding benzaldehyde derivatives by the cell extract containing FerA and FerB, thereby indicating their broad substrate specificities. We found a ferB homolog, ferB2, upstream of a 5-carboxyvanillic acid decarboxylase gene (ligW) involved in the degradation of 5,5'-dehydrodivanillic acid. The deduced amino acid sequence of ferB2 showed 49% identity with ferB, and its gene product showed feruloyl-CoA hydratase/lyase activity with a substrate specificity similar to that of FerB. Insertional inactivation of each fer gene in S. paucimobilis SYK-6 suggested that the ferA gene is essential and that ferB and ferB2 genes are involved in ferulic acid degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号