首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   61篇
  国内免费   1篇
  2022年   2篇
  2021年   8篇
  2019年   7篇
  2018年   12篇
  2017年   12篇
  2016年   8篇
  2015年   26篇
  2014年   33篇
  2013年   78篇
  2012年   64篇
  2011年   55篇
  2010年   29篇
  2009年   28篇
  2008年   62篇
  2007年   50篇
  2006年   60篇
  2005年   60篇
  2004年   62篇
  2003年   52篇
  2002年   70篇
  2001年   15篇
  2000年   12篇
  1999年   11篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   14篇
  1994年   4篇
  1993年   9篇
  1992年   6篇
  1991年   8篇
  1990年   6篇
  1989年   13篇
  1988年   5篇
  1987年   13篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1967年   1篇
  1964年   1篇
  1963年   2篇
排序方式: 共有986条查询结果,搜索用时 15 毫秒
41.
N-Benzoylgiycine amidohydrolase (hippurate hydrolase EC 3.5.1.32), which catalyzes the hydrolysis of hippuric acid to benzoic acid and glycine, was found in a cell-free extract of Pseudomonas putida C692-3 grown on a medium containing hippuric acid. The enzyme was purified from the extract by ammonium sulfate fractionation and column chromatographies on DEAE-cellulose, DEAE-Sephadex A-50, hydroxyapatite, and Sepharose CL-6B. The enzyme was finally crystallized. The crystalline enzyme was almost homogeneous on electrophoresis. The enzyme had a molecular weight of about 170,000 and consisted of four subunits identical in molecular weight (approximately 42,000). The enzyme hydrolyzed N-benzoylglycine most rapidly, and N-benzoyl-l-alanine and N-benzoyl-l-aminobutyric acid. The Km value for these substrates were 0.72 mm, 0.87 mm, and 0.87mm, respectively. The optimum pH of the enzyme reaction was 7.0 to 8.0 and the enzyme was stable from pH 6.0 to 8.0.  相似文献   
42.
The nature of the soluble proteins and peptides released from myofibrils by treatment with CASF (Ca2+-activated sarcoplasmic factor) was investigated by using Polyacrylamide gel electrophoresis in both a nondenaturing and a denaturing (sodium dodecyl sulfate=SDS) solvent and by using gel permeation chromatography on Sepharose 6B. Both CASF and trypsin treatment cause removal of Z-disks before causing other ultrastructurally detectable degradation of myofibrils. CASF treatment of myofibrils releases a protein that is identical to α-actinin, one of the known components of the Z-disk, on the basis of mobility in Polyacrylamide gel electrophoresis in a nondenaturing solvent and in SDS and on the basis of elution from gel permeation columns. Trypsin treatment of myofibrils releases a number of smaller molecular weight products that cannot be identified with any of the known myofibrillar proteins. Hence, CASF seems to remove Z-disks from myofibrils by means of a very specific proteolytic activity that releases α-actinin without extensively degrading it. Trypsin, on the other hand, probably seems to remove Z-disks by degrading α-actinin to peptides.  相似文献   
43.
To investigate the constituents of Z-disk, reconstitution of Z-disk by incubating some proteins released from myofibrils by CAF(Ca2+-activated factor) with Z-disk-extracted fiber bundles was carried out and examined with electron microscope. The materials released from myofibrils by CAF have been bound in Z-disk region, and Z-disk extracted from myofibrils with a low ionic strength solution has been reconstituted. On the other hand, Z-disk removed from myofibrils by CAF has not been reconstituted by the same way.  相似文献   
44.
3Z-Nonenal and 3Z, 6Z-nonadienal, potential biosynthetic precursors of 2E-nonenal and 2E, 6Z-nonadienal, were for the first time synthesized stereoseleclively.  相似文献   
45.
Beckwith-Wiedemann syndrome (BWS) is an imprinting-related human disease that is characterized by macrosomia, macroglossia, abdominal wall defects, and variable minor features. BWS is caused by several genetic/epigenetic alterations, such as loss of methylation at KvDMR1, gain of methylation at H19-DMR, paternal uniparental disomy of chromosome 11, CDKN1C mutations, and structural abnormalities of chromosome 11. CDKN1C is an imprinted gene with maternal preferential expression, encoding for a cyclin-dependent kinase (CDK) inhibitor. Mutations in CDKN1C are found in 40 % of familial BWS cases with dominant maternal transmission and in ~5 % of sporadic cases. In this study, we searched for CDKN1C mutations in 37 BWS cases that had no evidence for other alterations. We found five mutations—four novel and one known—from a total of six patients. Four were maternally inherited and one was a de novo mutation. Two frame-shift mutations and one nonsense mutation abolished the QT domain, containing a PCNA-binding domain and a nuclear localization signal. Two missense mutations occurred in the CDK inhibitory domain, diminishing its inhibitory function. The above-mentioned mutations were predicted by in silico analysis to lead to loss of function; therefore, we strongly suspect that such anomalies are causative in the etiology of BWS.  相似文献   
46.
Magnetosomes are membrane-enveloped bacterial organelles containing nano-sized magnetic particles, and function as a cellular magnetic sensor, which assist the cells to navigate and swim along the geomagnetic field. Localized with each magnetosome is a suite of proteins involved in the synthesis, maintenance and functionalization of the organelle, however the detailed molecular organization of the proteins in magnetosomes is unresolved. MamA is one of the most abundant magnetosome-associated proteins and is anchored to the magnetosome vesicles through protein-protein interactions, but the identity of the protein that interacts with MamA is undetermined. In this study, we found that MamA binds to a magnetosome membrane protein Mms6. Two different molecular masses of Mms6, 14.5-kDa and 6.0-kDa, were associated with the magnetosomes. Using affinity chromatography, we identified that the 14.5-kDa Mms6 interacts with MamA, and the interaction was further confirmed by pull-down, immunoprecipitation and size-exclusion chromatography assays. Prior to this, Mms6 was assumed to be strictly involved with biomineralizing magnetite; however, these results suggest that Mms6 has an additional responsibility, binding to MamA.  相似文献   
47.
Adipose-derived stem cells (ADSCs) can differentiate into neurons under particular conditions. It remains largely unknown whether this differentiation potential is affected by physical conditions such as obesity, which modulates the functions of adipose tissue. In this study, we determined the impact of either a 9-week high-fat diet (60% fat; HFD) or 9-week exercise training on the differentiation potential of ADSCs into neuron-like cells in male Wistar rats. Rats were randomly assigned to a normal diet-fed (ND-SED) group, HFD-fed (HFD-SED) group, or exercise-trained HFD-fed group (HFD-EX). After a 9-week intervention, ADSCs from all groups differentiated into neuron-like cells. Expression of neuronal marker proteins (nestin, βIII-tubulin, and microtubule-associated protein 2 [MAP2]) and the average length of cell neurites were lower in cells from HFD-SED rats than in other groups. Instead, protein expression of COX IV and Cyt-c, the Bax/Bcl-2 and LC3-II/I ratio, and the malondialdehyde level in culture medium were higher in cells from HFD-SED rats. No significant difference between ND-SED and HFD-EX rats was observed, except for the average length of cell neurites in MAP2. Thus, HFD impaired the differentiation potential of ADSCs into neuron-like cells, which was accompanied by increases in apoptotic activity and oxidative stress. Importantly, exercise training ameliorated the HFD-induced impairment of neurogenesis in ADSCs. The adipose tissue microenvironment could influence the differentiation potential of ADSCs, a source of autologous stem cell therapy.  相似文献   
48.
49.
50.
DNA computing is a novel method of computing proposed by Adleman (1994), in which the data is encoded in the sequences of oligonucleotides. Massively parallel reactions between oligonucleotides are expected to make it possible to solve huge problems. In this study, reliability of the ligation process employed in the DNA computing is tested by estimating the error rate at which wrong oligonucleotides are ligated. Ligation of wrong oligonucleotides would result in a wrong answer in the DNA computing. The dependence of the error rate on the number of mismatches between oligonucleotides and on the combination of bases is investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号