首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   42篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2016年   8篇
  2015年   14篇
  2014年   18篇
  2013年   12篇
  2012年   17篇
  2011年   32篇
  2010年   11篇
  2009年   12篇
  2008年   18篇
  2007年   18篇
  2006年   29篇
  2005年   21篇
  2004年   18篇
  2003年   21篇
  2002年   21篇
  2001年   12篇
  2000年   22篇
  1999年   20篇
  1998年   12篇
  1997年   16篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   18篇
  1991年   13篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1982年   2篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1967年   1篇
  1966年   2篇
排序方式: 共有492条查询结果,搜索用时 31 毫秒
161.
162.
Sugiyama A  Shitan N  Yazaki K 《Plant physiology》2007,144(4):2000-2008
Legume plants have an ability to fix atmospheric nitrogen into nutrients via symbiosis with soil microbes. As the initial event of the symbiosis, legume plants secrete flavonoids into the rhizosphere to attract rhizobia. Secretion of flavonoids is indispensable for the establishment of symbiotic nitrogen fixation, but almost nothing is known about the membrane transport mechanism of flavonoid secretion from legume root cells. In this study, we performed biochemical analyses to characterize the transport mechanism of flavonoid secretion using soybean (Glycine max) in which genistein is a signal flavonoid. Plasma membrane vesicles prepared from soybean roots showed clear transport activity of genistein in an ATP-dependent manner. This transport activity was inhibited by sodium orthovanadate, a typical inhibitor of ATP-binding cassette (ABC) transporters, but was hardly affected by various ionophores, such as gramicidin D, nigericin, or valinomycin, suggesting involvement of an ABC transporter in the secretion of flavonoids from soybean roots. The K(m) and V(max) values of this transport were calculated to be 158 mum and 322 pmol mg protein(-1) min(-1), respectively. Competition experiments using various flavonoids of both aglycone and glucoside varieties suggested that this ABC-type transporter recognizes genistein and daidzein, another signaling compound in soybean root exudates, as well as other isoflavonoid aglycones as its substrates. Transport activity was constitutive regardless of the availability of nitrogen nutrition. This is, to our knowledge, the first biochemical characterization of the membrane transport of flavonoid secretion from roots.  相似文献   
163.
ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene. We obtained 140 modified plasmids with single insertions of which 21 were in the coding region of the enzyme. Fourteen of them generated insertions of five amino acids, whereas the other seven created a stop codon and produced truncations. Correlation of ADP-Glc PPase activity to these modifications validated the enzyme model. Six of the insertions and one truncation produced enzymes with sufficient activity for the E. coli cells to synthesize glycogen and stain in the presence of iodine vapor. These were in regions away from the substrate site, whereas the mutants that did not stain had alterations in critical areas of the protein. The enzyme with a pentapeptide insertion between Leu(102) and Pro(103) was catalytically competent but insensitive to activation. We postulate this region as critical for the allosteric regulation of the enzyme, participating in the communication between the catalytic and regulatory domains.  相似文献   
164.
Mass spectrometry (MS) of glycoproteins is an emerging field in proteomics, poised to meet the technical demand for elucidation of the structural complexity and functions of the oligosaccharide components of molecules. Considering the divergence of the mass spectrometric methods employed for oligosaccharide analysis in recent publications, it is necessary to establish technical standards and demonstrate capabilities. In the present study of the Human Proteome Organisation (HUPO) Human Disease Glycomics/Proteome Initiative (HGPI), the same samples of transferrin and immunoglobulin-G were analyzed for N-linked oligosaccharides and their relative abundances in 20 laboratories, and the chromatographic and mass spectrometric analysis results were evaluated. In general, matrix-assisted laser desorption/ionization (MALDI) time-of-flight MS of permethylated oligosaccharide mixtures carried out in six laboratories yielded good quantitation, and the results can be correlated to those of chromatography of reductive amination derivatives. For underivatized oligosaccharide alditols, graphitized carbon-liquid chromatography (LC)/electrospray ionization (ESI) MS detecting deprotonated molecules in the negative ion mode provided acceptable quantitation. The variance of the results among these three methods was small. Detailed analyses of tryptic glycopeptides employing either nano LC/ESI MS/MS or MALDI MS demonstrated excellent capability to determine site-specific or subclass-specific glycan profiles in these samples. Taking into account the variety of MS technologies and options for distinct protocols used in this study, the results of this multi-institutional study indicate that MS-based analysis appears as the efficient method for identification and quantitation of oligosaccharides in glycomic studies and endorse the power of MS for glycopeptide characterization with high sensitivity in proteomic programs.  相似文献   
165.
Patients with chronic hepatitis C frequently have serum and hepatic iron overload, but the mechanism is unknown. Recently identified hepcidin, exclusively synthesized in the liver, is thought to be a key regulator for iron homeostasis and is induced by infection and inflammation. This study was conducted to determine the hepatic hepcidin expression levels in patients with various liver diseases. We investigated hepcidin mRNA levels of liver samples by real-time detection-polymerase chain reaction; 56 were hepatitis C virus (HCV) positive, 34 were hepatitis B virus (HBV) positive, and 42 were negative for HCV and HBV (3 cases of auto-immune hepatitis, 7 alcoholic liver disease, 13 primary biliary cirrhosis, 9 nonalcoholic fatty liver disease, and 10 normal liver). We analyzed the relation of hepcidin to clinical, hematological, histological, and etiological findings. Hepcidin expression levels were strongly correlated with serum ferritin (P < 0.0001) and the degree of iron deposit in liver tissues (P < 0.0001). Hepcidin was also correlated with hematological parameters (vs. hemoglobin, P = 0.0073; vs. serum iron, P = 0.0012; vs. transferrin saturation, P < 0.0001) and transaminase levels (P = 0.0013). The hepcidin-to-ferritin ratio was significantly lower in HCV(+) patients than in HBV(+) patients (P = 0.0129) or control subjects (P = 0.0080). In conclusion, hepcidin expression levels in chronic liver diseases were strongly correlated with either the serum ferritin concentration or degree of iron deposits in the liver. When adjusted by either serum ferritin values or hepatic iron scores, hepcidin indices were significantly lower in HCV(+) patients than in HBV(+) patients, suggesting that hepcidin may play a pivotal role in the pathogenesis of iron overload in patients with chronic hepatitis C.  相似文献   
166.
In our previous study, the CS-56 antibody, which recognizes a chondroitin sulfate moiety, labeled a subset of adult brain astrocytes, yielding a patchy extracellular matrix pattern. To explore the molecular nature of CS-56-labeled glycoproteins, we purified glycoproteins of the adult mouse cerebral cortex using a combination of anion-exchange, charge-transfer, and size-exclusion chromatographies. One of the purified proteins was identified as tenascin-R (TNR) by mass spectrometric analysis. When we compared TNR mRNA expression patterns with the distribution patterns of CS-56-positive cells, TNR mRNA was detected in CS-56-positive astrocytes. To examine the functions of TNR in astrocytes, we first confirmed that cultured astrocytes also expressed TNR protein. TNR knockdown by siRNA expression significantly reduced glutamate uptake in cultured astrocytes. Furthermore, expression of mRNA and protein of excitatory amino acid transporter 1 (GLAST), which is a major component of astrocytic glutamate transporters, was reduced by TNR knockdown. Our results suggest that TNR is expressed in a subset of astrocytes and contributes to glutamate homeostasis by regulating astrocytic GLAST expression.  相似文献   
167.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein as well as a classic glycolytic enzyme, and its pleiotropic functions are achieved by various post-translational modifications and the resulting translocations to intracellular compartments. In the present study, GAPDH in the plasma membrane of BeWo choriocarcinoma cells displayed a striking acidic shift in two-dimensional electrophoresis after cell-cell fusion induction by forskolin. This post-translational modification was deamidation of multiple glutaminyl residues, as determined by molecular mass measurement and tandem mass spectrometry of acidic GAPDH isoforms. Transglutaminase (TG) inhibitors prevented this acidic shift and reduced cell fusion. Knockdown of the TG2 gene by short hairpin RNA reproduced these effects of TG inhibitors. Various GAPDH mutants with replacement of different numbers (one to seven) of Gln by Glu were expressed in BeWo cells. These deamidated mutants reversed the suppressive effect of wild-type GAPDH overexpression on cell fusion. Interestingly, the mutants accumulated in the plasma membrane, and this accumulation was increased according to the number of Gln/Glu substitutions. Considering that GAPDH binds F-actin via an electrostatic interaction and that the cytoskeleton is rearranged in trophoblastic cell fusion, TG2-dependent GAPDH deamidation was suggested to participate in actin cytoskeletal remodeling.  相似文献   
168.
Glycans play key roles in a variety of protein functions under normal and pathological conditions, but several glycosyltransferase-deficient mice exhibit no or only mild phenotypes due to redundancy or compensation of glycan functions. However, we have only a limited understanding of the underlying mechanism for these observations. Our previous studies indicated that 70% of Fut8-deficient (Fut8−/−) mice that lack core fucose structure die within 3 days after birth, but the remainder survive for up to several weeks although they show growth retardation as well as emphysema. In this study, we show that, in mouse embryonic fibroblasts (MEFs) from Fut8−/− mice, another N-glycan branching structure, bisecting GlcNAc, is specifically up-regulated by enhanced gene expression of the responsible enzyme N-acetylglucosaminyltransferase III (GnT-III). As candidate target glycoproteins for bisecting GlcNAc modification, we confirmed that level of bisecting GlcNAc on β1-integrin and N-cadherin was increased in Fut8−/− MEFs. Moreover using mass spectrometry, glycan analysis of IgG1 in Fut8−/− mouse serum demonstrated that bisecting GlcNAc contents were also increased by Fut8 deficiency in vivo. As an underlying mechanism, we found that in Fut8−/− MEFs Wnt/β-catenin signaling is up-regulated, and an inhibitor against Wnt signaling was found to abrogate GnT-III expression, indicating that Wnt/β-catenin is involved in GnT-III up-regulation. Furthermore, various oxidative stress-related genes were also increased in Fut8−/− MEFs. These data suggest that Fut8−/− mice adapted to oxidative stress, both ex vivo and in vivo, by inducing various genes including GnT-III, which may compensate for the loss of core fucose functions.  相似文献   
169.
To clarify the effect of soy protein (SP) and fish meal (FM), compared to milk casein (MC), on the intestinal environment, we examined caecal environment of rats fed the test diets. Four-week-old rats were fed AIN-76-based diet containing 20 %, w/w MC, SP or FM for 16 days. Caecal organic acids were analysed by HPLC. Caecal putrefactive compounds (indole, phenol, H2S and ammonia) were analysed by colorimetric assays. Caecal microflora was determined by 16S rRNA gene-DGGE and pyrosequencing with bar-coded primers targeting the bacterial 16S rRNA gene. n-Butyric and lactic acid levels were high in rats fed SP and FM, respectively. Butyrate-producing bacteria, such as Oscillibacter, and lactate-producing bacteria, such as Lactobacillus, were detected in each diet group. Also, the putrefactive compound contents were high in rats fed SP and FM. In this study, both DGGE and pyrosequencing analyses were able to evaluate the dynamics of the intestinal microbiota. The results indicate that dietary proteins can alter the intestinal environment, affecting fermentation by the intestinal microbiota and the generation of putrefactive compounds.  相似文献   
170.
Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号