首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   14篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   1篇
  2014年   7篇
  2013年   13篇
  2012年   8篇
  2011年   12篇
  2010年   11篇
  2009年   7篇
  2008年   21篇
  2007年   9篇
  2006年   13篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   13篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1977年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
41.
Alix (ALG-2-interacting protein X) is a 95-kDa protein that interacts with an EF-hand type Ca(2+)-binding protein, ALG-2 (apoptosis-linked gene 2), through its C-terminal proline-rich region. In this study, we searched for proteins that interact with human AlixDeltaC (a truncated form not containing the C-terminal region) by using a yeast two-hybrid screen, and we identified two similar human proteins, CHMP4a and CHMP4b (chromatin-modifying protein; charged multivesicular body protein), as novel binding partners of Alix. The interaction of Alix with CHMP4b was confirmed by a glutathione S-transferase pull-down assay and by co-immunoprecipitation experiments. Fluorescence microscopic analysis revealed that CHMP4b transiently expressed in HeLa cells mainly exhibited a punctate distribution in the perinuclear area and co-localized with co-expressed Alix. The distribution of CHMP4b partly overlapped the distributions of early and late endosomal marker proteins, EEA1 (early endosome antigen 1) and Lamp-1 (lysosomal membrane protein-1), respectively. Transient overexpression of CHMP4b induced the accumulation of ubiquitinated proteins as punctate patterns that were partly overlapped with the distribution of CHMP4b and inhibited the disappearance of endocytosed epidermal growth factor. In contrast, stably expressed CHMP4b in HEK293 cells was observed diffusely in the cytoplasm. Transient overexpression of AlixDeltaC in stably CHMP4b-expressing cells, however, induced formation of vesicle-like structures in which CHMP4b and AlixDeltaC were co-localized. SKD1(E235Q), a dominant negative form of the AAA type ATPase SKD1 that plays critical roles in the endocytic pathway, was co-immunoprecipitated with CHMP4b. Furthermore, CHMP4b co-localized with SKD1(E235Q) as punctate patterns in the perinuclear area, and Alix was induced to exhibit dot-like distributions overlapped with SKD1(E235Q) in HeLa cells. These results suggest that CHMP4b and Alix participate in formation of multivesicular bodies by cooperating with SKD1.  相似文献   
42.
43.
Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule "X" and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.  相似文献   
44.
The mouse SKD1 is an AAA-type ATPase homologous to the yeast Vps4p implicated in transport from endosomes to the vacuole. To elucidate a possible role of SKD1 in mammalian endocytosis, we generated a mutant SKD1, harboring a mutation (E235Q) that is equivalent to the dominant negative mutation (E233Q) in Vps4p. Overexpression of the mutant SKD1 in cultured mammalian cells caused defect in uptake of transferrin and low-density lipoprotein. This was due to loss of their receptors from the cell surface. The decrease of the surface transferrin receptor (TfR) was correlated with expression levels of the mutant protein. The mutant protein displayed a perinuclear punctate distribution in contrast to a diffuse pattern of the wild-type SKD1. TfR, the lysosomal protein lamp-1, endocytosed dextran, and epidermal growth factor but not markers for the secretory pathway were accumulated in the mutant SKD1-localized compartments. Degradation of epidermal growth factor was inhibited. Electron microscopy revealed that the compartments were exaggerated multivesicular vacuoles with numerous tubulo-vesicular extensions containing TfR and endocytosed horseradish peroxidase. The early endosome antigen EEA1 was also redistributed to these aberrant membranes. Taken together, our findings suggest that SKD1 regulates morphology of endosomes and membrane traffic through them.  相似文献   
45.
The novel small GTPases Rin and Rit are close relatives of Ras, and recent studies show that they play a role in mediating neuronal differentiation. However, the direct effectors of Rin and Rit have yet to be fully characterized. Here we showed that Rin and Rit directly bind to the PDZ domain of PAR6, a cell polarity-regulating protein, in a GTP-dependent manner both in vivo and in vitro. Moreover, Rin and Rit can form a ternary complex consisting of PAR6 and Rac/Cdc42, members of the Rho family of small GTPases modulating cell growth and polarity. This ternary complex synergistically potentiates cell transformation in NIH3T3 cells, and the interaction between Rin/Rit and the PDZ domain of PAR6 is important for this effect. These results suggest that the Rin/Rit-PAR6-Rac/Cdc42 ternary complex may work physiologically in the cells, such as in tumorigenesis.  相似文献   
46.
Chloroquine myopathy is a drug poisoning disease involving rimmed vacuole formation. By Western blot analysis, we investigated posttranslational modification of LC3 in cultured cells with a high concentration of chloroquine, and found that the autophagosome membrane-bound form of LC3 increased dose-dependently. We also constructed a disease model by excessive chloroquine injection into rats and unusual immunohistochemical alteration was chased using anti-LC3 antibodies. With chloroquine treatment, muscle atrophy occurred predominantly in soleus muscle and unusual autophagosomes were accumulated. Therefore, we concluded that autophagy plays an important role in rimmed vacuole formation in certain muscular atrophies.  相似文献   
47.
Edwardsiella tarda is a pathogen with a broad host range infecting animals and humans. We have reported recently that the type III secretion system (TTSS) is essential for intracellular replication of the bacterium in murine macrophages. The present study shows that the TTSS is also needed for intracellular growth of the bacterium in human epithelial cells (HEp-2). However, different from the previous microarray analyses on murine macrophages, upregulation of the mRNA expression level of NF-kappaB target genes was not detected in the infected HEp-2 cells. The wild-type E. tarda, but not its TTSS mutant, actually repressed the tumor necrosis factor alpha-dependent NF-kappaB activation in an NF-kappaB reporter gene assay. These results suggest TTSS-dependent repression of the NF-kappaB activation in HEp-2 cells infected with E. tarda.  相似文献   
48.
49.
Autophagy is an intracellular degradation process that delivers cytosolic material to lysosomes and vacuoles. To investigate the mechanisms that regulate autophagy, we performed a genome-wide screen using a yeast deletion-mutant collection, and found that Npr2 and Npr3 mutants were defective in autophagy. Their mammalian homologs, NPRL2 and NPRL3, were also involved in regulation of autophagy. Npr2-Npr3 function upstream of Gtr1-Gtr2, homologs of the mammalian RRAG GTPase complex, which is crucial for TORC1 regulation. Both npr2∆ mutants and a GTP-bound Gtr1 mutant suppressed autophagy and increased Tor1 vacuole localization. Furthermore, Gtr2 binds to the TORC1 subunit Kog1. A GDP-bound Gtr1 mutant induced autophagy even under nutrient-rich conditions, and this effect was dependent on the direct binding of Gtr2 to Kog1. These results revealed that 2 molecular mechanisms, Npr2-Npr3-dependent GTP hydrolysis of Gtr1 and direct binding of Gtr2 to Kog1, are involved in TORC1 inactivation and autophagic induction.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号