首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   64篇
  2022年   3篇
  2020年   5篇
  2019年   5篇
  2018年   14篇
  2017年   5篇
  2016年   16篇
  2015年   34篇
  2014年   27篇
  2013年   64篇
  2012年   48篇
  2011年   58篇
  2010年   35篇
  2009年   34篇
  2008年   58篇
  2007年   66篇
  2006年   54篇
  2005年   58篇
  2004年   69篇
  2003年   56篇
  2002年   50篇
  2001年   15篇
  2000年   9篇
  1999年   24篇
  1998年   17篇
  1997年   12篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   11篇
  1988年   18篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   7篇
  1981年   9篇
  1980年   11篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1968年   5篇
  1967年   2篇
排序方式: 共有993条查询结果,搜索用时 46 毫秒
91.
HOM/C homeobox (Hox) and forkhead box (Fox) factors are reported to be expressed in the foregut endoderm and are subsequently detected in a spatio-temporal pattern during lung development. Some of these factors were reported to influence the expression of lung marker proteins or to modulate lung development. To clarify the molecular mechanisms for generating functional lung cells from progenitor cell populations, we introduced the forkhead box factors, FoxA1 and FoxA2, and the homeobox factor, HoxB3, into the differentiation process in a multipotent hamster lung epithelial M3E3/C3 cell line. Ectopic expression of FoxA2 promoted differentiation to Clara-like cells with up-regulation of the expression of the lung marker proteins, Clara cell-specific 10-kDa protein and surfactant protein-B. In contrast, FoxA1 repressed the differentiation. HoxB3 transfection induced FoxA2 expression transiently at the pre-differentiation stage. The endogenous HoxB3 expression level decreased at later stages of Clara-like cell differentiation, and the attenuation was enhanced by FoxA2 transfection. HoxB3 is a putative upstream regulator that enhances FoxA2 expression at the pre-differentiation stage. In addition, we found that the expression of HoxA4, HoxA5, and HoxC9 increased differentially during Clara-like cell differentiation. These results suggest that HoxB3 may be a putative positive regulator of FoxA2 expression at the pre-differentiation stage, and those interactions of Fox factors and Hox factors could participate in Clara cell differentiation.  相似文献   
92.
We previously reported that a nef-deleted SHIV (SHIV-NI) is nonpathogenic and gave macaques protection from challenge infection with pathogenic SHIV-C2/1. To investigate whether IFN-gamma augments the immune response induced by this vaccination, we examined the antiviral and adjuvant effect of recombinant human IFN-gamma (rIFN-gamma) in vaccinated and unvaccinated monkeys. Nine monkeys were vaccinated with nef-deleted nonpathogenic SHIV-NI. Four of them were administered with rIFN-gamma and the other five monkeys were administered with placebo. After the challenge with pathogenic SHIV-C2/1, CD4(+) T-cell counts were maintained similarly in monkeys of both groups, while those of the unvaccinated monkeys decreased dramatically at 2 weeks after challenge. However, the peaks of plasma viral load were reduced to 100-fold in SHIV-NI vaccinated monkeys combined with rIFN-gamma compared with those in SHIV-NI vaccinated monkeys without rIFN-gamma. The peaks of plasma viral load were inversely correlated with the number of SIV Gag-specific IFN-gamma-producing cells. In SHIV-NI-vaccinated monkeys with rIFN-gamma, the number of SIV Gag-specific IFN-gamma-producing cells of PBMCs increased 2-fold compared with those in SHIV-NI-vaccinated monkeys without rIFN-gamma, and the NK activity and MIP-1alpha production of PBMCs were also enhanced. Thus, vaccination of SHIV-NI in combination with rIFN-gamma was more effective in modulating the antiviral immune system into a Th1 type response than SHIV-NI vaccination alone. These results suggest that IFN-gamma augmented the anti-viral effect by enhancing innate immunity and shifting the immune response to Th1.  相似文献   
93.
The fern Athyrium yokoscense is known to be highly tolerant to lead toxicity, and is a lead hyperaccumulator that can accumulate over 1,000 g g–1 of lead in its dry matter. In this work, we examined whether the gametophytic generation of A. yokoscense also resists lead toxicity like the sporophytic generation. Spore germination in A. yokoscense was more tolerant to Pb2+, compared to that in other fern species, such as Pteridium aquilinum, Lygodium japonicum and Pteris vittata. In addition, the early gametophyte development of A. yokoscense was not much affected by 10 M Pb2+, as evaluated from the prothallial growth and rhizoid development. We also showed that Athyrium gametophytes could accumulate more than 10,000 g g–1 of lead, and that the lead was localized in the cytosol and vacuole of rhizoidal cells, as determined by a transmission electron micrograph. These results indicate that Athyrium gametophytes have the ability to accumulate lead in the rhizoids. Furthermore, the gametophytes were found to include a large amount of proanthocyanidins (condensed tannins). Because proanthocyanidins have a latent ability to complex with lead ions, the possible roles of proanthocyanidins in the lead tolerance and accumulation of Athyrium gametophytes are discussed.  相似文献   
94.
Cloning of mice has been achieved by transferring nuclei of various types of somatic cell nuclei into enucleated oocytes. However, all attempts to produce live cloned offspring using the nuclei of neurons from adult cerebral cortex have failed. Previously we obtained cloned mice using the nuclei of neural cells collected from fetal cerebral cortex. Here, we attempted to generate cloned mice using differentiated neurons from the cerebral cortex of postnatal (day 0-4) mice. Although we were unable to obtain live cloned pups, many fetuses reached day 10.5 days of development. These fetuses showed various abnormalities such as spherical omission of the neuroepithelium, collapsed lumen of neural tube, and aberrant expressions of marker proteins of neurons. We produced chimeric mice in which some hair cells and kidney cells were originated from differentiated neurons. In chimeric fetuses, LacZ-positive donor cells were in all three germ cell layers. However, chimeras with large contribution of donor-derived cells were not obtained. These results indicate that nuclei of differentiated neurons have lost their developmental totipotency. In other words, the conventional nuclear transfer technique does not allow nuclei of differentiated neurons to undergo complete genomic reprogramming required for normal embryonic development.  相似文献   
95.
Among the members of the major facilitator superfamily of Saccharomyces cerevisiae, we identified genes involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine. ATP-dependent uptake of histidine and lysine by isolated vacuolar membrane vesicles was impaired in YMR088c, a vacuolar basic amino acid transporter 1 (VBA1)-deleted strain, whereas uptake of tyrosine or calcium was little affected. This defect in histidine and lysine uptake was complemented fully by introducing the VBA1 gene and partially by a gene encoding Vba1p fused with green fluorescent protein, which was determined to localize exclusively to the vacuolar membrane. A defect in the uptake of histidine, lysine, or arginine was also observed in the vacuolar membrane vesicles of mutants YBR293w (VBA2) and YCL069w (VBA3). These three VBA genes are closely related phylogenetically and constitute a new family of basic amino acid transporters in the yeast vacuole.  相似文献   
96.
We previously reported that the reductive activities of yeast protein-disulfide isomerase (PDI) family proteins did not completely explain their contribution to the viability of Saccharomyces cerevisiae (Kimura, T., Hosoda, Y., Kitamura, Y., Nakamura, H., Horibe, T., and Kikuchi, M. (2004) Biochem. Biophys. Res. Commun. 320, 359-365). In this study, we examined oxidative refolding activities and found that Mpd1p, Mpd2, and Eug1p exhibit activities of 13.8, 16.0, and 2.16%, respectively, compared with Pdi1p and that activity for Eps1p is undetectable. In analyses of interactions between yeast PDI proteins and endoplasmic reticulum molecular chaperones, we found that Mpd1p alone does not have chaperone activity but that it interacts with and inhibits the chaperone activity of Cne1p, a homologue of mammalian calnexin, and that Cne1p increases the reductive activity of Mpd1p. These results suggest that the interface between Mpd1p and Cne1p is near the peptide-binding site of Cne1p. In addition, Eps1p interacts with Pdi1p, Eug1p, Mpd1p, and Kar2p with dissociation constants (KD) in the range of 10(-7) to 10(-6). Interestingly, co-chaperone activities were completely suppressed in Eps1p-Pdi1p and Eps1p-Mpd1p complexes, although only Eps1p and Pdi1p have chaperone activity. The in vivo consequences of these results are discussed.  相似文献   
97.
Rap1 and Rho small G proteins have been implicated in the neurite outgrowth, but the functional relationship between Rap1 and Rho in the neurite outgrowth remains to be established. Here we identified a potent Rho GTPase-activating protein (GAP), RA-RhoGAP, as a direct downstream target of Rap1 in the neurite outgrowth. RA-RhoGAP has the RA and GAP domains and showed GAP activity specific for Rho, which was enhanced by the binding of the GTP-bound active form of Rap1 to the RA domain. Overexpression of RA-RhoGAP induced inactivation of Rho for promoting the neurite outgrowth in a Rap1-dependent manner. Knockdown of RA-RhoGAP reduced the Rap1-induced neurite outgrowth. These results indicate that RA-RhoGAP transduces a signal from Rap1 to Rho and regulates the neurite outgrowth.  相似文献   
98.
Neurotransmitter is released from nerve terminals by Ca2+-dependent exocytosis through many steps. SNARE proteins are key components at the priming and fusion steps, and the priming step is modulated by cAMP-dependent protein kinase (PKA), which causes synaptic plasticity. We show that the SNARE regulatory protein tomosyn is directly phosphorylated by PKA, which reduces its interaction with syntaxin-1 (a component of SNAREs) and enhances the formation of the SNARE complex. Electrophysiological studies using cultured superior cervical ganglion (SCG) neurons revealed that this enhanced formation of the SNARE complex by the PKA-catalyzed phosphorylation of tomosyn increased the fusion-competent readily releasable pool of synaptic vesicles and, thereby, enhanced neurotransmitter release. This mechanism was indeed involved in the facilitation of neurotransmitter release that was induced by a potent biological mediator, the pituitary adenylate cyclase-activating polypeptide, in SCG neurons. We describe the roles and modes of action of PKA and tomosyn in Ca2+-dependent neurotransmitter release.  相似文献   
99.
Heat shock protein 27 (HSP27) is expressed at high levels in human hepatocellular carcinoma (HCC). We examined correlations of total HSP27 and serine phosphorylated (Ser-15, Ser-78, and Ser-82) HSP27 levels in HCC tissues with clinical and pathologic characteristics in 48 resected HCC specimens. The levels of total and Ser-phosphorylated HSP27 were evaluated by Western blot analysis. Immunohistochemical analysis of HSP27 expression was also performed on some samples. Phosphorylation of HSP27 was detected in all 48 HCC tissues. Levels of phosphorylated HSP27 were correlated inversely with tumor size, microvascular invasion of HCC, and tumor stage by TNM classification. In contrast, only microvascular invasion showed an inverse correlation with total HSP27 levels. The decrease in phosphorylated HSP27 in progressed HCC was also observed by immunohistochemistry. Levels of phosphorylated HSP27 gradually decreased in parallel with HCC progression. Our findings suggest that phosphorylated HSP27 may have a suppressive role in progression of human HCC.  相似文献   
100.
Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules that are involved in formation of cadherin-based adherens junctions (AJs). The nectin-based cell-cell adhesion induces activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of AJs through reorganization of the actin cytoskeleton. Although evidence has accumulated that nectins recruit cadherins to the nectin-based cell-cell adhesion sites through their cytoplasm-associated proteins, afadin and catenins, it is not fully understood how nectins are physically associated with cadherins. Here we identified a rat counterpart of the human LIM domain only 7 (LMO7) as an afadin- and alpha-actinin-binding protein. Rat LMO7 has two splice variants, LMO7a and LMO7b, consisting of 1,729 and 1,395 amino acids, respectively. LMO7 has calponin homology, PDZ, and LIM domains. Western blotting revealed that LMO7 was expressed ubiquitously in various rat tissues. Immunofluorescence and immunoelectron microscopy revealed that LMO7 localized at cell-cell AJs, where afadin localized, in epithelial cells of rat gallbladder. In addition, LMO7 localized at the cytoplasmic faces of apical membranes in the same epithelial cells. We furthermore revealed that LMO7 bound alpha-actinin, an actin filament-bundling protein, which bound to alpha-catenin. Immunoprecipitation analysis revealed that LMO7 was associated with both the nectin-afadin and E-cadherin-catenin systems. LMO7 was assembled at the cell-cell adhesion sites after both the nectin-afadin and E-cadherin-catenin systems had been assembled. These results indicate that LMO7 is an afadin- and alpha-actinin-binding protein that connects the nectin-afadin and E-cadherin-catenin systems through alpha-actinin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号