首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1521篇
  免费   87篇
  1608篇
  2022年   8篇
  2021年   17篇
  2020年   5篇
  2019年   11篇
  2018年   14篇
  2017年   20篇
  2016年   19篇
  2015年   30篇
  2014年   40篇
  2013年   89篇
  2012年   89篇
  2011年   93篇
  2010年   60篇
  2009年   51篇
  2008年   66篇
  2007年   58篇
  2006年   69篇
  2005年   84篇
  2004年   82篇
  2003年   79篇
  2002年   76篇
  2001年   45篇
  2000年   26篇
  1999年   39篇
  1998年   19篇
  1997年   18篇
  1996年   24篇
  1995年   30篇
  1994年   17篇
  1993年   21篇
  1992年   31篇
  1991年   31篇
  1990年   24篇
  1989年   19篇
  1988年   23篇
  1987年   15篇
  1986年   9篇
  1985年   18篇
  1984年   18篇
  1983年   16篇
  1982年   14篇
  1981年   23篇
  1980年   15篇
  1978年   5篇
  1977年   16篇
  1976年   12篇
  1975年   3篇
  1973年   3篇
  1970年   3篇
  1968年   2篇
排序方式: 共有1608条查询结果,搜索用时 15 毫秒
51.
A series of 4-phenylpyrrole derivatives D were designed, synthesized, and evaluated for their potential as novel orally available androgen receptor antagonists therapeutically effective against castration-resistant prostate cancers. 4-Phenylpyrrole compound 1 exhibited androgen receptor (AR) antagonistic activity against T877A and W741C mutant-type ARs as well as wild-type AR. An arylmethyl group incorporated into compound 1 contributed to enhancement of antagonistic activity. Compound 4n, 1-{[6-chloro-5-(hydroxymethyl)pyridin-3-yl]methyl}-4-(4-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carbonitrile exhibited inhibitory effects on tumor cell growth against the bicalutamide-resistant LNCaP-cxD2 cell line as well as the androgen receptor-dependent JDCaP cell line in a mouse xenograft model. These results demonstrate that this series of pyrrole compounds are novel androgen receptor antagonists with efficacy against prostate cancer cells, including castration-resistant prostate cancers such as bicalutamide-resistant prostate cancer.  相似文献   
52.
53.
Summary A photomicrobial electrode, which uses the photosynthetic bacteria Chromatium sp. in conjunction with a hydrogen electrode, was developed for the determination of sulphide. The response time of the photomicrobial electrode was 5–10 min. A linear relationship was obtained between the current of the electrode and the sodium sulphide concentration below 3.5 mM. The minimum detectable concentration of sodium sulphide was 0.4 mM. Selectivity of the sensor is satisfactory. A good agreement was obtained between the photomicrobial electrode and the ethylene blue method (correlation coefficient: 0.90).  相似文献   
54.
The name Enterobacter kobei sp. nov. is proposed for a group of organisms referred to as NIH Group 21 at the National Institute of Health, Tokyo. The members of this species are Gram-negative, motile rods conforming to the definition of the family Enterobacteriaceae. The DNA relatedness of 23 strains of NIH Group 21 to the representative proposed as the type strain of this species averaged 82% at 70°C, whereas the relatedness to other species within the family Enterobacteriaceae was less than 42%. Because the phenotypic resemblance to Enterobacter cloacae is very close and the DNA relatedness (12–42%) is closer to species of the genus Enterobacter than to other species of the family, the members of NIH Group 21 were placed in the genus Enterobacter. Close phenotypic and genetic relationships were also found between NIH Group 21 and a member of a group of organisms referred to as Enteric Group 69 at the Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. It is suggested that the latter could be regarded as a subspecific rank of E. kobei, though this is subject to study of further strains. The majority of strains of E. kobei were isolated from clinical specimens. A culture of the type strain (NIH 1485-79) has been deposited in the Japan Collection of Microorganisms as JCM 8580. Received: 22 March 1996 / Accepted: 19 April 1996  相似文献   
55.
Hsp90 participates in many distinct aspects of cellular functions and accomplishes these roles by interacting with multiple client proteins. To gain insight into the interactions between Hsp90 and its clients, here we have reduced the protein level of Hsp90 in avian cells by gene targeting in an attempt to elicit the otherwise undetectable (because of the vast amount of cellular Hsp90) Hsp90-interacting proteins. Hsp90beta-deficient cells can grow, albeit more slowly than wild-type cells. B cell antigen receptor signaling is multiply impaired in these mutant cells; in particular, the amount of immunoglobulin M heavy chain protein is markedly reduced. Furthermore, serum activation does not promote ERK phosphorylation in Hsp90beta-deficient cells. These multifaceted depressive effects seem to be provoked independently of each other and possibly recapitulate the proteome-wide in vivo functions of Hsp90. Reintroduction of the Hsp90beta gene efficiently restores all of the defects. Unexpectedly, however, introducing the Hsp90alpha gene is also effective in restoration; thus, these defects might be caused by a reduction in the total expression of Hsp90 rather than by loss of Hsp90beta-specific function.  相似文献   
56.
A new mode of herbicidal action was established by finding specific inhibitors of imidazoleglycerol phosphate dehydratase, an enzyme of histidine (His) biosynthesis. Three triazole phosphonates inhibited the reaction of the enzyme with Ki values of 40 [plus or minus] 6.5, 10 [plus or minus] 1.6, and 8.5 [plus or minus] 1.4 nM, respectively, and were highly cytotoxic to cultured plant cells. This effect was completely reversed by the addition of His, proving that the cytotoxicity was primarily caused by the inhibition of His biosynthesis. These inhibitors showed wide-spectrum, postemergent herbicidal activity at application rates ranging from 0.05 to 2 kg/ha.  相似文献   
57.
58.
Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.  相似文献   
59.
Two cDNA fragments induced in developing zygotes ofDictyostelium discoideum were isolated by mRNA differential display. the relevant genes were also found to be expressed during asexual development, suggesting that sexual and asexual development share common molecular mechanisms inD. discoideum.  相似文献   
60.
Trehalose dimycolate (TDM), also known as cord factor, is a major surface glycolipid of the cell wall of mycobacteria. Because of its potent biological functions in models of infection, adjuvancy, and immunotherapy, it is important to determine how its biosynthesis is regulated. Here we show that glucose, a host-derived product that is not readily available in the environment, causes Mycobacterium avium to down-regulate TDM expression while up-regulating production of another major glycolipid with immunological roles in T cell activation, glucose monomycolate (GMM). In vitro, the mechanism of reciprocal regulation of TDM and GMM involves competitive substrate selection by antigen 85A. The switch from TDM to GMM biosynthesis occurs near the physiological concentration of glucose present in mammalian hosts. We further demonstrate that GMM is produced in vivo by mycobacteria growing in mouse lung. These results establish an enzymatic pathway for GMM production. More generally, these observations provide a specific enzymatic mechanism for dynamic alterations of cell wall glycolipid remodeling in response to the transition from noncellular to cellular growth environments, including factors that are monitored by the host immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号