首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   887篇
  免费   34篇
  2022年   6篇
  2021年   13篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   10篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   69篇
  2012年   65篇
  2011年   48篇
  2010年   29篇
  2009年   32篇
  2008年   40篇
  2007年   31篇
  2006年   37篇
  2005年   61篇
  2004年   49篇
  2003年   49篇
  2002年   48篇
  2001年   18篇
  2000年   19篇
  1999年   17篇
  1998年   11篇
  1997年   9篇
  1996年   10篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   13篇
  1991年   13篇
  1990年   10篇
  1989年   6篇
  1988年   8篇
  1987年   16篇
  1986年   7篇
  1985年   12篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1981年   17篇
  1980年   5篇
  1978年   3篇
  1977年   8篇
  1976年   7篇
  1975年   2篇
  1973年   2篇
  1968年   5篇
  1965年   2篇
排序方式: 共有921条查询结果,搜索用时 15 毫秒
91.
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51–DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.  相似文献   
92.
We previously isolated Streptomyces racemochromogenes strain 10-3, which produces a phospholipase D (PLD) with high transphosphatidylation activity. Here, we purified and cloned the PLD (PLD103) from the strain. PLD103 exerted the highest hydrolytic activity at a slightly alkaline pH, which is in contrast to the majority of known Streptomyces PLDs that have a slightly acidic optimum pH. PLD103 shares only 71–76% amino acid sequence identity with other Streptomyces PLDs that have a slightly acidic optimum pH; thus, the diversity in the primary structure might explain the discrepancy observed in the optimum pH. The purified PLD displayed high transphosphatidylation activity in the presence of glycerol, l-serine, and 2-aminoethanol hydrochloride with a conversion rate of 82–97% in a simple one-phase system, which was comparable to the rate of other Streptomyces PLDs in a complicated biphasic system.  相似文献   
93.
Proline and betaine accumulate in plant cells under environmental stresses including salt stress. Here, we investigated effects of proline and betaine on the growth and activities of antioxidant enzymes in tobacco Bright Yellow-2 (BY-2) culture cells in suspension under salt stress. Both proline and betaine mitigated the inhibition of growth of BY-2 cells under salt stress and the mitigating effect of proline was more than that of betaine. Salt stress significantly decreased the activities of superoxide dismutase (SOD), catalase and peroxidase in BY-2 cells. Exogenous application of proline or betaine alleviated the reduction in catalase and peroxidase activities but not SOD activity under salt stress. In addition, proline was found to be effective in alleviating the inhibition of salt stress-induced catalase and peroxidase activities in BY-2 cells. Neither proline nor betaine directly scavenged superoxide (O(2)(-)) or hydrogen peroxide (H(2)O(2)). It is concluded that exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine because of its superior ability to increase the activities of antioxidant enzymes.  相似文献   
94.
Up-regulation of the antioxidant system provides protection against NaCl-induced oxidative damage in plants. Antioxidants and activity of enzymes involved in the ascorbate-glutathione (ASC-GSH) cycle in tobacco Bright Yellow-2 (BY-2) were investigated to assess the antioxidant protection offered by exogenous proline and glycinebetaine (betaine from now on) against salt stress using cells grown in suspension culture. Reduced ascorbate (ASC) was detected in BY-2 cells but dehydroascorbate (DHA) was not. Large quantities of a reduced form of glutathione (GSH) and smaller quantities of an oxidized form of glutathione (GSSG) were detected in BY-2 cells. Salt stress significantly reduced the contents of ASC and GSH as well as activities of ASC-GSH cycle enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR). Exogenous proline or betaine increased the activities of all enzymes except MDHAR involved in NaCl-induced ASC-GSH cycle. Levels of ASC and GSH in BY-2 cells under salt stress were lower in the presence of proline or betaine than in the absence of proline or betaine whereas there was no difference in redox status. Proline proved more effective than betaine in maintaining the activity of enzymes involved in NaCl-induced ASC-GSH cycle. Neither proline nor betaine had any direct protective effect on NaCl-induced enzyme activity involved in the antioxidant system; however, both improved salt tolerance by increasing enzyme activity. The present study, together with our earlier findings [Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 2006;164:553-61.], suggests that proline offered greater protection against salt stress than betaine did because proline was more effective in increasing the activity of enzymes involved in the antioxidant system.  相似文献   
95.
Apigenin is a representative dietary flavone (2-phenyl-4H-1-benzopyran-4-one) inhibiting cancer cell growth both in cell culture systems and in vivo. The prooxidant potential of apigenin was confirmed by the observations using flowcytometric and immunoblotting techniques that the intracellular accumulations of reactive oxygen species (ROS) and protein carbonyls were detected in the cells treated with apigenin in a dose-dependent manner. Conversely, chrysin (5,7-dihydroxyflavone) did not show any prooxidant effect. A structure-activity relationship data thus indicated that a 4'-monohydroxyl group, which can be oxidized to semiquinone radical but not up to quinone-like metabolite, is essential for prooxidant effect. When HL-60 cells were treated with not only a heme synthesis inhibitor succinyl acetone (SA) but also myeloperoxidase (MPO) inhibitors, the ROS level enhanced by apigenin was significantly reduced. The gathered data suggested that peroxidase-catalyzed production of apigenin B-ring phenoxyl radicals might be responsible for the prooxidant effect. This is supported by the observation that MPO is able to catalyze production of apigenin phenoxyl radicals, detected by an electron spin resonance-spin trapping technique. We also reveal that both SA and alpha-tocopherol enhance cellular susceptibility to apoptosis-inducing stimuli by apigenin. In conclusion, the prooxidant effect of apigenin is likely to oxidize a variety of thiols through the formation of phenoxyl radicals and thus seems to play a significant role in the abortive apoptotic pathway switching to necrotic cell death.  相似文献   
96.
97.
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant and biologically active polyphenol in green tea, induces apoptosis and suppresses proliferation of cancer cells by modulating multiple signal transduction pathways. However, the fundamental mechanisms responsible for these cancer-preventive effects have not been clearly elucidated. Recently, we found that EGCG can covalently bind to cysteine residues in proteins through autoxidation and subsequently modulate protein function. In this study, we demonstrate the direct binding of EGCG to cellular proteins in AZ521 human gastric cancer cells by redox-cycle staining. We comprehensively explored the binding targets of EGCG from EGCG-treated AZ521 cells by proteomics techniques combined with the boronate-affinity pull-down method. The DEAD-box RNA helicase p68, which is overexpressed in a variety of tumor cells and plays an important role in cancer development and progression, was identified as a novel EGCG-binding target. Exposure of AZ521 cells to EGCG lowered the p68 level dose dependently. The present findings show that EGCG inhibits AZ521 cell proliferation by preventing β-catenin oncogenic signaling through proteasomal degradation of p68 and provide a new perspective on the molecular mechanism of EGCG action.  相似文献   
98.
Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.  相似文献   
99.

Background

Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC) synthase, cytochrome P450(c21).

Methodology/Principal Findings

The expression of P450(c21) was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG) was demonstrated by metabolism analysis of 3H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21), P450(2D4), P450(11β1) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT) and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM) doses of CORT for 1 h.

Conclusions/Significance

These results imply the complete pathway of corticosteroid synthesis of ‘pregnenolone →PROG→DOC→CORT’ in the hippocampal neurons. Both P450(c21) and P450(2D4) can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.  相似文献   
100.
We prepared two dissected fragments of hen lysozyme and examined whether or not these two fragments associated to form a native-like structure. One (Fragment I) is the peptide fragment Asn59-homoserine-105 containing Cys64-Cys80 and Cys76-Cys94. The other (Fragment II) is the peptide fragment Lys1-homoserine-58 connected by two disulfide bridges, Cys6-Cys127 and Cys30-Cys115, to the peptide fragment Asn106-Leu129. It was found that the Fragment I immobilized in the cuvette formed an equimolar complex with Fragment II (K(d) = 3.3x10(-4) M at pH 8 and 25 degrees C) by means of surface plasmon resonance. Moreover, from analyses by circular dichroism spectroscopy and ion-exchange chromatography of the mixture of Fragments I and II at pH 8 under non-reducing conditions, it was suggested that these fragments associated to give the native-like structure. However, the mutant Fragment I in which Cys64-Cys80 and Cys76-Cys94 are lacking owing to the mutation of Cys to Ala, or the mutant fragment in which Trp62 is mutated to Gly, did not form the native-like species with Fragment II, because the mutant Fragment I derived from mutant lysozymes had no local conformation due to mutations. Considering our previous results where the preferential oxidation of two inside disulfide bonds, Cys64-Cys80 and Cys76-Cys94, occurred in the refolding of the fully reduced Fragment I, we suggest that the peptide region corresponding to Fragment I is an initiation site for hen lysozyme folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号