首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   888篇
  免费   34篇
  2022年   7篇
  2021年   13篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   10篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   69篇
  2012年   65篇
  2011年   48篇
  2010年   29篇
  2009年   32篇
  2008年   40篇
  2007年   31篇
  2006年   37篇
  2005年   61篇
  2004年   49篇
  2003年   49篇
  2002年   48篇
  2001年   18篇
  2000年   19篇
  1999年   17篇
  1998年   11篇
  1997年   9篇
  1996年   10篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   13篇
  1991年   13篇
  1990年   10篇
  1989年   6篇
  1988年   8篇
  1987年   16篇
  1986年   7篇
  1985年   12篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1981年   17篇
  1980年   5篇
  1978年   3篇
  1977年   8篇
  1976年   7篇
  1975年   2篇
  1973年   2篇
  1968年   5篇
  1965年   2篇
排序方式: 共有922条查询结果,搜索用时 15 毫秒
871.
Synthesis of the verbenachalcone derivatives 3-5 involving littorachalcone 2 from diaryl ether 7 enabled an SAR study of enhancement activity against the NGF-mediated neurite outgrowth from PC12D cells. Littorachalcone 2 and o-deoxyverbenachalcone 5 showed similar activity to that of verbenachalcone 1.  相似文献   
872.
Eisenia arborea is an edible brown alga occasionally used as a folk medicine in gynecopathy in Japan. A new phlorotannin was isolated from the alga during our search for naturally occurring anti-allergic compounds from edible algae guided by the inhibitory effect on histamine release from rat basophile leukemia (RBL)-2H3 cells. The phlorotannin was called "phlorofucofuroeckol-B." Its structure was determined by spectral analysis and chemical conversion. This paper describes the isolation, structure elucidation, and inhibitory effect of phlorofucofuroeckol-B on histamine release.  相似文献   
873.
We screened myoga extracts for inhibitors of human platelet aggregation and human 5-lipoxygenase. We identified a novel labdane type of diterpene, together with three known diterpenes (miogadial and galanals A and B) from the flower buds of myoga. Spectroscopic data indicated the structure of the new compound to be 12(E)-labdene-15,16,(8beta)17-trial (miogatrial). Miogatrial and miogadial were potent inhibitors of human platelet aggregation and human 5-lipoxygenase (5-LOX). The sesquiterpene, polygodial, also exhibited strong inhibitory activity against human platelet aggregation and 5-LOX. On the other hand, galanals A and B did not have inhibitory activity in either experimental system. It thus appears that a 3-formyl-3-butenal structure was essential for the potent inhibition of human platelet aggregation and human 5-LOX.  相似文献   
874.
An important and promising group of compounds that have a chemopreventive property are organosulfur compounds, such as isothiocyanates (ITCs). In recent years, it has been shown that ITCs induce apoptosis in various cancer cell lines and experimental rodents. During the course of apoptosis induction by ITC, multiple signal-transduction pathways and apoptosis intermediates are modulated. We have also clarified the molecular mechanism underlying the relationship between cell cycle arrest and apoptosis induced by benzyl isothiocyanate (BITC), a major ITC compound isolated from papaya. The exposure of cells to BITC resulted in the inhibition of the G2/M progression that coincided with not only the up-regulated expression of the G2/M cell cycle arrest-regulating genes but also the apoptosis induction. The experiment using the phase-specific synchronized cells demonstrated that the G2/M phase-arrested cells are more sensitive to undergoing apoptotic stimulation by BITC than the cells in other phases. We identified the phosphorylated Bcl-2 as a key molecule linking the p38 MAPK-dependent cell cycle arrest with the JNK activation by BITC. We also found that BITC induced the cytotoxic effect more preferentially in the proliferating normal human colon epithelial cells than in the quiescent cells. Conversely, treatment with an excessive concentration of BITC resulted in necrotic cell death without DNA ladder formation. This review addresses the biological impact of cell death induction by BITC as well as other ITCs and the involved signal transduction pathways.  相似文献   
875.
Pancreatic beta-cell death induced by oxidative stress plays an important role in the pathogenesis of diabetes mellitus. We studied the relation between rapid intracellular acidification and cell death of pancreatic beta-cell line NIT-1 cells exposed to H2O2 or alloxan. Intracellular pH was measured by a pH-sensitive dye, and cell damage by double staining with Annexin-V and propidium iodide using flow cytometry. H2O2 and alloxan caused a rapid fall in intracellular pH and suppressed Na+/H+ exchanger activity in the NH4Cl prepulse method. H2O2 induced necrotic cell death, which shifted to apoptotic cell death when initial acidification was prevented by pH clamping to 7.4 using nigericin (unclamped cells vs clamped cells, necrosis 43.8 +/- 5.8% vs 21.1 +/- 10.6%, P < 0.05; apoptosis 8.0 +/- 1.9% vs 44.5 +/- 5.0%, P < 0.01). pH-clamped cells showed enhanced caspase 3 activity and proapoptotic Bax expression. On the other hand, NIT-1 cells were resistant to alloxan toxicity, but treatment with alloxan and nigericin strikingly enhanced the cytotoxicity. Antioxidants partly prevented cell death, although intracellular pH remained similarly acidic. The rapid intracellular acidification was not the cause of cell death but a significant determinant of the mode of death of H2O2 -treated beta cells, whereas no link between cell death and acidification was demonstrated in alloxan toxicity.  相似文献   
876.
Chitosan induced stomatal closure in wild type-plants and NADPH oxidase knock-out mutants (atrbohD atrbohF), and reactive oxygen species (ROS) production in wild-type guard cells. Closure and production were completely abolished by catalase and a peroxidase inhibitor. These results indicate that chitosan induces ROS production mediated by peroxidase, resulting in stomatal closure.  相似文献   
877.
In this study, we investigated the relationship between the stability of catechins and their electrophilic reactivity with proteins. The stability of catechins was evaluated by HPLC analysis. Catechol-type catechins were stable in a neutral buffer, but pyrogallol-type catechins, such as (-)-epigallocatechin gallate (EGCg), were unstable. The electrophilic reactivity of catechins with thiol groups in a model peptide and a protein was confirmed by both mass spectrometry and electrophoresis/blotting with redox-cycling staining. In a comparison of several catechins, pyrogallol-type catechins had higher reactivity with protein thiols than catechol-type catechins. The instability and reactivity of EGCg were enhanced in an alkaline pH buffer. The reactivity of EGCg was reduced by antioxidants due to their ability to prevent EGCg autoxidation. These results indicate that the instability against oxidation of catechins is profoundly related to their electrophilic reactivity. Consequently, the difference in these properties of tea catechins can contribute to the magnitude of their biological activities.  相似文献   
878.
Methylglyoxal (MG) is one of the aldehydes that accumulate in plants under environmental stress. Glutathione S-transferases (GSTs) play important roles, including detoxification, in the stress tolerance systems of plants. To determine the effects of MG, we characterized recombinant GST. MG decreased GST activity and thiol contents with increasing K(m). GST can serve as a target of MG modification, which is suppressed by application of reduced glutathione.  相似文献   
879.
RAD51, an essential eukaryotic DNA recombinase, promotes homologous pairing and strand exchange during homologous recombination and the recombinational repair of double strand breaks. Mutations that up- or down-regulate RAD51 gene expression have been identified in several tumors, suggesting that inappropriate expression of the RAD51 activity may cause tumorigenesis. To identify chemical compounds that affect the RAD51 activity, in the present study, we performed the RAD51-mediated strand exchange assay in the presence of 185 chemical compounds. We found that 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) efficiently inhibited the RAD51-mediated strand exchange. DIDS also inhibited the RAD51-mediated homologous pairing in the absence of RPA. A surface plasmon resonance analysis revealed that DIDS directly binds to RAD51. A gel mobility shift assay showed that DIDS significantly inhibited the DNA-binding activity of RAD51. Therefore, DIDS may bind near the DNA binding site(s) of RAD51 and compete with DNA for RAD51 binding.  相似文献   
880.
(–)-Epigallocatechin-3-gallate (EGCG) has been reported to possess a wide range of biological and pharmacological properties. In this study, we investigated the effects of EGCG on IL-13 gene expression in human basophilic KU812 cells. The IL-13 mRNA expression level was dose-dependently increased by treatment with EGCG (5–20 μM) for 1 h and additional incubation in a medium for 23 h. EGCG significantly increased the intracellular peroxide level as detected by the peroxide-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate. A pharmacological experiment using catalase and a structure–activity relationship study revealed that the exogenously produced H2O2 significantly, but partially, contributed to the IL-13 expression as well as the intracellular oxidative status. Furthermore, EGCG at the concentration required for IL-13 up-regulation activated c-Jun NH2-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 mitogen-activated protein kinase in KU812 cells. Transfection of a JNK-specific siRNA as well as treatment with a JNK-specific inhibitor, SP600125, significantly reduced the EGCG-induced IL-13 mRNA expression, by 47.1 and 44.6%, respectively. In addition, we observed the nuclear translocation, mRNA up-regulation, and activation of DNA binding with the IL-13 promoter of nuclear factor of activated T cells (NFATc1) in the EGCG-treated cells. These data provide biological evidence that EGCG induces IL-13 mRNA expression via the JNK-dependent NFATc1 pathway in KU812 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号