首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1208篇
  免费   66篇
  2022年   4篇
  2021年   16篇
  2020年   6篇
  2019年   4篇
  2018年   9篇
  2017年   14篇
  2016年   22篇
  2015年   36篇
  2014年   34篇
  2013年   80篇
  2012年   54篇
  2011年   70篇
  2010年   47篇
  2009年   59篇
  2008年   82篇
  2007年   93篇
  2006年   84篇
  2005年   88篇
  2004年   91篇
  2003年   95篇
  2002年   77篇
  2001年   6篇
  2000年   10篇
  1999年   9篇
  1998年   12篇
  1997年   12篇
  1996年   6篇
  1995年   11篇
  1994年   18篇
  1993年   13篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1982年   3篇
  1981年   9篇
  1980年   7篇
  1979年   3篇
  1978年   7篇
  1975年   7篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
  1969年   3篇
  1967年   2篇
排序方式: 共有1274条查询结果,搜索用时 687 毫秒
991.
Human beta-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of alpha- and beta-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using alpha-1,6-mannosyltransferase-deficient (och1Delta) yeast as the host. Genes encoding the alpha- and beta-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (alphaalpha) and HexB (betabeta). A total of 57 mg of beta-hexosaminidase isozymes, of which 13 mg was HexA (alphabeta), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the beta-subunit. The purified HexA was treated with alpha-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 +/- 0.1 and 1.7 +/- 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the beta-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.  相似文献   
992.
The mechanism of maternal mitochondrial inheritance in animals involves the selective elimination of sperm mitochondria by the elimination factor of the egg and the sperm mitochondria-specific factor. In vitro fertilization using sperm from isogenic mice incorporating heterospecific mitochondrial DNA (mtDNA) showed that the number of PCR positives of sperm mtDNA in two-cell embryos was significantly increased following sperm incubation with anti-tetratricopeptide repeat-containing protein involved in spermatogenesis (tpis) protein, anti-translocator of mitochondrial outer membrane (Tom) 22 and anti-Tom40 antibodies. The treatment of fertilized eggs with EGTA and other endonuclease inhibitors increased the sperm mtDNA levels. We conclude that the elimination factor, which is probably an endonuclease, is selectively received by the tpis protein of the sperm mitochondrial outer membrane within the egg. It is then transported into the sperm mitochondria by Tom22 and Tom40, where it destroys the sperm mtDNA, establishing the maternal inheritance of mtDNA.  相似文献   
993.
Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1 is elicited by sufficient iron rather than by iron starvation. In order to clarify this unusual pattern, siderophore production was monitored in parallel to iron assimilation using the chrome azurol sulfonate assay and the ferrozine method respectively. Iron concentration lowered approximately five times less than its initial concentration only within 4 h post-inoculation, rendering the medium iron deficient. A concentration of at least 6 microM Fe(3+) is required to initiate siderophore production. The propensity of M. magneticum AMB-1 for the assimilation of large amounts of iron accounts for the rapid depletion of iron in the medium, thereby triggering siderophore excretion. M. magneticum AMB-1 produces both hydroxamate and catechol siderophores.  相似文献   
994.
Water-insoluble yeast invertase was prepared by binding native invertase to DEAE-cellulose. Some characteristics of the bound invertase and the continuous hydrolysis of sucrose by use of it are described. The activity of bound invertase corresponded to about 1/2 at pH 3.4 when compared with the maximum activity of free form and it could hydrolyze sucrose into invert sugar perfectly. The apparent optimum pH of bound invertase was shifted toward acid pH by about 2 pH units in comparison with free invertase. Stability of bound invertase to temperature was slightly less in comparison with free invertase at pH 5.2. The continuous sucrose hydrolysis was carried out using bound invertase at pH 3.6 and it could be used about ten times until the hydrolysis ratio decreased to the half of the initial.  相似文献   
995.
Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome.  相似文献   
996.
997.
Summary The ras1 gene, an oncogene homologue, is known to be essential for recognition of the mating pheromone and hence for conjugation but not for vegetative growth in Schizosaccharomyces pombe. To facilitate further characterization and genetic manipulation of this gene, we have mapped it by using S. pombe strains which carry the Saccharomyces cerevisiae LEU2 gene inserted next to ras1 on the chromosome. Crosses with tester strains revealed that ras1 is tightly linked to pro2 on chromosome I. Furthermore, we have shown that ras1 is allelic with ste5, one of the sterility genes described by O. Girgsdies. The map position previously reported for ste5 eventually turned out to be false.  相似文献   
998.
999.
The aim of this study is to explore a cause-oriented therapy for patients with uterine cervical cancer that expresses erythropoietin (Epo) and its receptor (EpoR). Epo, by binding to EpoR, stimulates the proliferation and differentiation of erythroid progenitor cells into hemoglobin-containing red blood cells. In this study, we report that the HeLa cells in the xenografts expressed ε, γ, and α globins as well as myoglobin (Mb) to produce tetrameric α2ε2 and α2γ2 and monomeric Mb, most of which were significantly suppressed with an EpoR antagonist EMP9. Western blotting revealed that the EMP9 treatment inhibited the AKT-pAKT, MAPKs-pMAPKs, and STAT5-pSTAT5 signaling pathways. Moreover, the treatment induced apoptosis and suppression of the growth and inhibited the survival through disruption of the harmonized hemoprotein syntheses in the tumor cells concomitant with destruction of vascular nets in the xenografts. Furthermore, macrophages and natural killer (NK) cells with intense HIF-1α expression recruited significantly more in the degenerating foci of the xenografts. These findings were associated with the enhanced expressions of nNOS in the tumor cells and iNOS in macrophages and NK cells in the tumor sites. The treated tumor cells exhibited a substantial number of perforations on the cell surface, which indicates that the tumors were damaged by both the nNOS-induced nitric oxide (NO) production in the tumor cells as well as the iNOS-induced NO production in the innate immune cells. Taken together, these data suggest that HeLa cells constitutively acquire ε, γ and Mb synthetic capacity for their survival. Therefore, EMP9 treatment might be a cause-oriented and effective therapy for patients with squamous cell carcinoma of the uterine cervix.  相似文献   
1000.
An extracellular acid phosphatase secreted into the medium during growth of Tetrahymena pryiformis strain W was purified about 900-fold by (NH4)2SO4 precipitation, gel filtration and ion exchange chromatography. The purified acid phosphatase was homogenous as judged by polycrylamide gel electrophoresis and was found to be a glycoprotein. Its carbohydrate content was about 10% of the total protein content. The native enzyme has a molecular weight of 120 000 as determined by gel filtration and 61 000 as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The acid phosphatase thus appears to consist of two subunits of equal size. The amino acid analysis revealed a relatively high content of asparic acid, glutamic acid and leucine. The purified acid phosphatase from Tetrahymena had a rather broad substrate specificity; it hydrolyzed organic phosphates, nucleotide phosphates and hexose phosphates, but had no diesterase activity. The Km values determined with p-nitrophenyl phosphate, adenosine 5′-phosphate and glucose 6-phosphate were 3.1·10?4 M, 3.9·10?4 M and 1.6·10?3 M, respectively. The optima pH for hydrolysis of three substrates were similar (pH 4.6). Hg2+ and Fe3+ at 5 mM were inhibitory for the purified acid phosphatase, and fluoride, L-(+)-tartaric acid and molybdate also inhibited its cavity at low concentrations. The enzyme was competitively inhibited by NaF (Ki=5.6·10?4 M) and by L-(+)-tartaric acid (Ki = 8.5·10?5 M), while it was inhibited noncompetitively by molybdate Ki = 5.0·10?6 M). The extracellular acid phosphatase purified from Tetrahymena was indistinguishable from the intracellular enzyme in optimum pH, Km, thermal stability and inhibition by NaF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号