首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1226篇
  免费   67篇
  1293篇
  2022年   5篇
  2021年   16篇
  2020年   6篇
  2019年   4篇
  2018年   9篇
  2017年   14篇
  2016年   22篇
  2015年   36篇
  2014年   34篇
  2013年   80篇
  2012年   54篇
  2011年   70篇
  2010年   47篇
  2009年   59篇
  2008年   82篇
  2007年   93篇
  2006年   84篇
  2005年   88篇
  2004年   91篇
  2003年   96篇
  2002年   77篇
  2001年   6篇
  2000年   10篇
  1999年   13篇
  1998年   12篇
  1997年   12篇
  1996年   6篇
  1995年   11篇
  1994年   18篇
  1993年   13篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1982年   3篇
  1981年   9篇
  1980年   8篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1975年   7篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
  1969年   3篇
排序方式: 共有1293条查询结果,搜索用时 15 毫秒
991.
In rat neonatal myocytes, a constitutively active G alpha(q) causes cellular injury and apoptosis. However, stimulation of the alpha(1)-adrenergic receptor, one of the G(q) protein-coupled receptors, with phenylephrine for 48 h causes little cellular injury and apoptosis. Expression of the G beta gamma-sequestering peptide beta ARK-ct increases the phenylephrine-induced cardiac injury, indicating that G beta gamma released from G(q) counteracts the G alpha(q)-mediated cellular injury. Stimulation with phenylephrine activates extracellular signal-regulated kinase (ERK) and Akt, and activation is significantly blunted by beta ARK-ct. Inhibition of Akt by inhibitors of phosphatidylinositol 3-kinase increases the cellular injury induced by phenylephrine stimulation. In contrast to the inhibition of Akt, inhibition of ERK does not affect the phenylephrine-induced cardiac injury. These results suggest that G beta gamma released from G(q) upon alpha(1)-adrenergic receptor stimulation activates ERK and Akt. However, activation of Akt but not ERK plays an important role in the protection against the G alpha(q)-induced cellular injury and apoptosis.  相似文献   
992.
Nucleostemin is a nucleolar protein known to play a variety of roles in cell-cycle progression, apoptosis inhibition, and DNA damage protection in embryonic stem cells and tissue stem cells. However, the role of nucleostemin in hematopoietic stem cells (HSCs) is yet to be determined. Here, we identified an indispensable role of nucleostemin in mouse HSCs. Depletion of nucleostemin using short hairpin RNA strikingly impaired the self-renewal activity of HSCs both in vitro and in vivo. Consistently, nucleostemin depletion triggered apoptosis rather than cell-cycle arrest in HSCs. Furthermore, DNA damage accumulated during cultivation upon depletion of nucleostemin. The impaired self-renewal activity of HSCs induced by nucleostemin depletion was partially rescued by p53 deficiency but not by p16Ink4a or p19Arf deficiency. Taken together, our study demonstrates that nucleostemin protects HSCs from DNA damage accumulation and is required for the maintenance of HSCs.  相似文献   
993.
We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells.  相似文献   
994.
Tetrodotoxin (TTX) is a potent blocker of voltage-gated sodium channels, but not all sodium channels are equally sensitive to inhibition by TTX. The molecular basis of differential TTX sensitivity of mammalian sodium channels has been largely elucidated. In contrast, our knowledge about the sensitivity of invertebrate sodium channels to TTX remains poor, in part because of limited success in functional expression of these channels. In this study, we report the functional characterization in Xenopus oocytes of the first non-insect, invertebrate voltage-gated sodium channel from the varroa mite (Varroa destructor), an ecto-parasite of the honeybee. This arachnid sodium channel activates and inactivates rapidly with half-maximal activation at −18 mV and half-maximal fast inactivation at −29 mV. Interestingly, this arachnid channel showed surprising TTX resistance. TTX blocked this channel with an IC50 of 1 μm. Subsequent site-directed mutagenesis revealed two residues, Thr-1674 and Ser-1967, in the pore-forming region of domains III and IV, respectively, which were responsible for the observed resistance to inhibition by TTX. Furthermore, sequence comparison and additional amino acid substitutions suggested that sequence polymorphisms at these two positions could be a widespread mechanism for modulating TTX sensitivity of sodium channels in diverse invertebrates.  相似文献   
995.
Chronotoxicity of nedaplatin in rats   总被引:3,自引:0,他引:3  
Chronotoxicologic profiles of nedaplatin, a platinum compound, were evaluated in rats maintained under a 12 light/12 dark cycle with light from 07:00h to 19:00 h. Nedaplatin (5 mg/kg) was injected intravenously, once a week for 5 weeks at 08:00h or 20:00h. The suppression of body weight gain and reduction of creatinine clearance were significantly greater with the 20:00h than 08:00h treatment. Accumulation of nedaplatin in the renal cortex and bone marrow were also greater with 20:00 h treatment. There were significant relationships between the nedaplatin content in the kidney and bone marrow and degree of injury to each. These results suggest that the nedaplatin-induced toxicity depends on its dosing-time, and it is greater with treatment at 20:00 h, during the active phase. The dosing-time dependency in the accumulation of nedaplatin in the tissue of the organs might be involved in this chronotoxicologic phenomenon.  相似文献   
996.
997.

Although tumor necrosis factor-α (TNF-α) is a known major inflammatory mediator in inflammatory bowel disease (IBD) and has various effects on intestinal epithelial cell (IEC) homeostasis, the changes in IECs in the early inflammatory state induced during short-time treatment (24 h) with TNF-α remain unclear. In this study, we investigated TNF-α-induced alterations in IECs in the early inflammatory state using mouse jejunal organoids (enteroids). Of the inflammatory cytokines, i.e., TNF-α, IL-1β, IL-6, and IL-17, only TNF-α markedly increased the mRNA level of macrophage inflammatory protein 2 (MIP-2; the mouse homologue of interleukin-8), which is induced in the early stages of inflammation. TNF-α stimulation (3 h and 6 h) decreased the mRNA level of the stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and polycomb group ring finger 4 and the progenitor cell marker prominin-1, which is also known as CD133. In addition, TNF-α treatment (24 h) decreased the number of Lgr5-positive cells and enteroid proliferation. TNF-α stimulation at 3 h and 6 h also decreased the mRNA level of chromogranin A and mucin 2, which are respective markers of enteroendocrine and goblet cells. Moreover, enteroids treated with TNF-α (24 h) not only decreased the integrity of tight junctions and cytoskeletal components but also increased intercellular permeability in an influx test with fluorescent dextran, indicating disrupted intestinal barrier function. Taken together, our findings indicate that short-time treatment with TNF-α promotes the inflammatory response and decreases intestinal stem cell activity and barrier function.

  相似文献   
998.
Peripheral stalk subunits of eukaryotic or mammalian vacuolar ATPases (V-ATPases) play key roles in regulating its assembly and disassembly. In a previous study, we purified several subunits and their isoforms of the peripheral stalk region of Homo sapiens (human) V-ATPase; such as C1, E1G1, H, and the N-terminal cytoplasmic region of Vo, a1. Here, we investigated the in vitro binding interactions of the subunits at the stalk region and measured their specific affinities. Surface plasmon resonance experiments revealed that the subunit C1 binds the E1G1 heterodimer with both high and low affinities (2.8 nM and 1.9 µM, respectively). In addition, an E1G1-H complex can be formed with high affinity (48 nM), whereas affinities of other subunit pairs appeared to be low (∼0.21−3.0 µM). The putative ternary complex of C1-H-E1G1 was not much strong on co-incubation of these subunits, indicating that the two strong complexes of C1-E1G1 and H-E1G1 in cooperation with many other weak interactions may be sufficiently strong enough to withstand the torque of rotation during catalysis. We observed a partially stable quaternary complex (consisting of E1G1, C1, a1NT, and H subunits) resulting from discrete peripheral subunit interactions stabilizing the complex through their intrinsic affinities. No binding was observed in the absence of E1G1 (using only H, C1, and a1NT); therefore, it is likely that, in vivo, the E1G1 heterodimer has a significant role in the initiation of subunit assembly. Multiple interactions of variable affinity in the stalk region may be important to the mechanism of reversible dissociation of the intact V-ATPase.  相似文献   
999.
1000.
The mechanism of maternal mitochondrial inheritance in animals involves the selective elimination of sperm mitochondria by the elimination factor of the egg and the sperm mitochondria-specific factor. In vitro fertilization using sperm from isogenic mice incorporating heterospecific mitochondrial DNA (mtDNA) showed that the number of PCR positives of sperm mtDNA in two-cell embryos was significantly increased following sperm incubation with anti-tetratricopeptide repeat-containing protein involved in spermatogenesis (tpis) protein, anti-translocator of mitochondrial outer membrane (Tom) 22 and anti-Tom40 antibodies. The treatment of fertilized eggs with EGTA and other endonuclease inhibitors increased the sperm mtDNA levels. We conclude that the elimination factor, which is probably an endonuclease, is selectively received by the tpis protein of the sperm mitochondrial outer membrane within the egg. It is then transported into the sperm mitochondria by Tom22 and Tom40, where it destroys the sperm mtDNA, establishing the maternal inheritance of mtDNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号