首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2205篇
  免费   158篇
  2022年   7篇
  2021年   31篇
  2020年   11篇
  2019年   11篇
  2018年   19篇
  2017年   27篇
  2016年   37篇
  2015年   63篇
  2014年   61篇
  2013年   131篇
  2012年   121篇
  2011年   128篇
  2010年   81篇
  2009年   88篇
  2008年   145篇
  2007年   159篇
  2006年   136篇
  2005年   137篇
  2004年   142篇
  2003年   148篇
  2002年   125篇
  2001年   49篇
  2000年   53篇
  1999年   45篇
  1998年   25篇
  1997年   32篇
  1996年   11篇
  1995年   15篇
  1994年   23篇
  1993年   20篇
  1992年   26篇
  1991年   27篇
  1990年   21篇
  1989年   17篇
  1988年   19篇
  1987年   12篇
  1986年   6篇
  1985年   15篇
  1984年   10篇
  1983年   15篇
  1982年   7篇
  1981年   15篇
  1980年   10篇
  1979年   11篇
  1978年   12篇
  1977年   7篇
  1976年   5篇
  1975年   12篇
  1973年   5篇
  1972年   5篇
排序方式: 共有2363条查询结果,搜索用时 31 毫秒
191.
192.
Hydroxylated derivatives were designed and synthesized based on the information of oxidative metabolites. Compounds derived from beta-substituted (2R,3R)-2-amino-3-hydroxypropionic acid showed improved inhibitory activities against the binding of MIP-1alpha to human CCR5, compared with the non-hydroxylated derivatives and the other isomers.  相似文献   
193.
A molecular test for Alzheimer's disease could lead to better treatment and therapies. We found 18 signaling proteins in blood plasma that can be used to classify blinded samples from Alzheimer's and control subjects with close to 90% accuracy and to identify patients who had mild cognitive impairment that progressed to Alzheimer's disease 2-6 years later. Biological analysis of the 18 proteins points to systemic dysregulation of hematopoiesis, immune responses, apoptosis and neuronal support in presymptomatic Alzheimer's disease.  相似文献   
194.
Placental dysfunction underlies many complications during pregnancy, and better understanding of gene function during placentation could have considerable clinical relevance. However, the lack of a facile method for placenta-specific gene manipulation has hampered investigation of placental organogenesis and the treatment of placental dysfunction. We showed previously that transduction of fertilized mouse eggs with lentiviral vectors leads to transgene expression in both the fetus and the placenta. Here we report placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts after removal of the zona pellucida. All of the placentas analyzed, but none of the fetuses, were transgenic. Application of this method substantially rescued mice deficient in Ets2, Mapk14 (also known as p38alpha) and Mapk1 (also known as Erk2) from embryonic lethality caused by placental defects. Ectopic expression of Mapk11 also complemented Mapk14 deficiency during placentation.  相似文献   
195.
196.
In rice (Oryza sativa) and Arabidopsis thaliana, gibberellin (GA) signaling is mediated by GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins in collaboration with a GA-specific F-box protein. To explore when plants evolved the ability to perceive GA by the GID1/DELLA pathway, we examined these GA signaling components in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. An in silico search identified several homologs of GID1, DELLA, and GID2, a GA-specific F-box protein in rice, in both species. Sm GID1a and Sm GID1b, GID1 proteins from S. moellendorffii, showed GA binding activity in vitro and interacted with DELLA proteins from S. moellendorffii in a GA-dependent manner in yeast. Introduction of constitutively expressed Sm GID1a, Sm G1D1b, and Sm GID2a transgenes rescued the dwarf phenotype of rice gid1 and gid2 mutants. Furthermore, treatment with GA(4), a major GA in S. moellendorffii, caused downregulation of Sm GID1b, Sm GA20 oxidase, and Sm GA3 oxidase and degradation of the Sm DELLA1 protein. These results demonstrate that the homologs of GID1, DELLA, and GID2 work in a similar manner in S. moellendorffii and in flowering plants. Biochemical studies revealed that Sm GID1s have different GA binding properties from GID1s in flowering plants. No evidence was found for the functional conservation of these genes in P. patens, indicating that GID1/DELLA-mediated GA signaling, if present, differs from that in vascular plants. Our results suggest that GID1/DELLA-mediated GA signaling appeared after the divergence of vascular plants from the moss lineage.  相似文献   
197.
A cyclic RGD peptide-conjugated block copolymer, cyclo[RGDfK(CX-)]-poly(ethylene glycol)-polylysine (c(RGDfK)-PEG-PLys), was synthesized from acetal-PEG-PLys under mild acidic conditions and spontaneously associated with plasmid DNA (pDNA) to form a polyplex micelle in aqueous solution. The cyclic RGD peptide recognizes alphavbeta3 and alphavbeta5 integrin receptors, which play a pivotal role in angiogenesis, vascular intima thickening, and the proliferation of malignant tumors. The c(RGDfK)-PEG-PLys/pDNA polyplex micelle showed a remarkably increased transfection efficiency (TE) compared to the PEG-PLys/pDNA polyplex micelle for the cultured HeLa cells possessing alphavbeta3 and alphavbeta5 integrins. On the other hand, in the transfection against the 293T cells possessing no alphavbeta3 and a few alphavbeta5 integrins, the TE of the c(RGDfK)-PEG-PLys/pDNA micelle showed no increase compared to the TE of the PEG-PLys/pDNA micelle. Flow cytometric analysis revealed a higher uptake of the c(RGDfK)-PEG-PLys/pDNA micelle than the PEG-PLys/pDNA micelle against HeLa cells, consistent with the transfection results. Furthermore, a confocal laser scanning microscopic observation revealed that the pDNA in the c(RGDfK)-PEG-PLys micelle preferentially accumulated in the perinuclear region of the HeLa cells within 3 h of incubation. No such fast and directed accumulation of pDNA to the perinuclear region was observed for the micelles without c(RGDfK) ligands. These results indicate that the increase in the TE induced by the introduction of the c(RGDfK) peptide ligand was due to an increase in cellular uptake as well as facilitated intracellular trafficking of micelles toward the perinuclear region via alphavbeta3 and alphavbeta5 integrin receptor-mediated endocytosis, suggesting that the cyclic RGD peptide-conjugated polyplex micelle has promising feasibility as a site-specifically targetable gene delivery system.  相似文献   
198.
Sphingosine 1-phosphate (S1P), a bioactive sphingolipid involved in diverse biological processes, is generated by sphingosine kinase (SphK) and acts via intracellular and/or extracellular mechanisms. We used biochemical, pharmacological, and physiological approaches to investigate in rat myometrium the contractile effect of exogenous S1P and the possible contribution of SphK in endothelin-1 (ET-1)-mediated contraction. S1P stimulated uterine contractility (EC50 = 1 µM and maximal response = 5 µM) by a pertussis toxin-insensitive and a phospholipse C (PLC)-independent pathway. Phosphorylated FTY720, which interacts with all S1P receptors, except S1P2 receptors, failed to mimic S1P contractile response, indicating that the effects of S1P involved S1P2 receptors that are expressed in myometrium. Contraction mediated by S1P and ET-1 required extracellular calcium and Rho kinase activation. Inhibition of SphK reduced ET-1-mediated contraction. ET-1, via ETA receptors coupled to pertussis toxin-insensitive G proteins, stimulated SphK1 activity and induced its translocation to the membranes. Myometrial contraction triggered by ET-1 is consecutive to the sequential activation of PLC, protein kinase C, SphK1 and Rho kinase. Prolonged exposure of the myometrium to S1P downregulated S1P2 receptors and abolished the contraction induced by exogenous S1P. However, in these conditions, the tension triggered by ET-1 was not reduced, indicating that SphK activated by ET-1 contributed to its contractile effect via a S1P2 receptor-independent process. Our findings demonstrated that exogenous S1P and SphK activity regulated myometrial contraction and may be of physiological relevance in the regulation of uterine motility during gestation and parturition. uterus; contraction  相似文献   
199.
Several reports have documented a better prognosis for HIV‐1‐infected patients co‐infected with GBV‐C, while other reports have contradicted such findings with the result that this issue remains controversial. We attempted to clarify the complicated status of the effect of GBV‐C co‐infection on HIV‐1‐infected patients. GBV‐C RNA was detected in 37 samples in 182 HIV‐1‐infected patients (20.3%) using RT/nested PCR. Of these, 3 were determined to be GBV‐C genotype 1, 12 were genotype 2, and the remaining 22 were genotype 3. The GBV‐C viral load quantified by real‐time PCR ranged from 7.8 × 103 to 3.3 × 106 copies/ml. Weakly negative correlation was observed between GBV‐C viral load and HIV‐1 viral load in 19 HAART‐naïve patients, indicating that a higher GBV‐C viral load is associated with a greater suppression of HIV‐1 replication. A previously published in vitro study suggested that GBV‐C infection would induce up‐regulation of RANTES, leading to suppression of HIV‐1 replication. However, in our present study, the blood RANTES level was significantly lower in the GBV‐C co‐infected group than in the uninfected group (190–9,959 vs. 264–31,038 pg/ml, P=0.004). Our results suggested that a suppression of HIV‐1 replication by GBV‐C co‐infection is not mediated by up‐regulated RANTES, and thus call for another as yet unknown factor.  相似文献   
200.
Orange- to red-colored flowers are difficult to produce by conventional breeding techniques in some floricultural plants. This is due to the deficiency in the formation of pelargonidin, which confers orange to red colors, in their flowers. Previous researchers have reported that brick-red colored flowers can be produced by introducing a foreign dihydroflavonol 4-reductase (DFR) with different substrate specificity in Petunia hybrida, which does not accumulate pelargonidin pigments naturally. However, because these experiments used dihydrokaempferol (DHK)-accumulated mutants as transformation hosts, this strategy cannot be applied directly to other floricultural plants. Thus in this study, we attempted to produce red-flowered plants by suppressing two endogenous genes and expressing one foreign gene using tobacco as a model plant. We used a chimeric RNAi construct for suppression of two genes (flavonol synthase [FLS] and flavonoid 3′-hydroxylase [F3H]) and expression of the gerbera DFR gene in order to accumulate pelargonidin pigments in tobacco flowers. We successfully produced red-flowered tobacco plants containing high amounts of additional pelargonidin as confirmed by HPLC analysis. The flavonol content was reduced in the transgenic plants as expected, although complete inhibition was not achieved. Expression analysis also showed that reduction of the two-targeted genes and expression of the foreign gene occurred simultaneously. These results demonstrate that flower color modification can be achieved by multiple gene regulation without use of mutants if the vector constructs are designed resourcefully. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号