全文获取类型
收费全文 | 1680篇 |
免费 | 98篇 |
国内免费 | 2篇 |
专业分类
1780篇 |
出版年
2022年 | 12篇 |
2021年 | 16篇 |
2020年 | 10篇 |
2019年 | 19篇 |
2018年 | 20篇 |
2017年 | 16篇 |
2016年 | 30篇 |
2015年 | 61篇 |
2014年 | 69篇 |
2013年 | 180篇 |
2012年 | 102篇 |
2011年 | 93篇 |
2010年 | 71篇 |
2009年 | 49篇 |
2008年 | 95篇 |
2007年 | 104篇 |
2006年 | 86篇 |
2005年 | 82篇 |
2004年 | 74篇 |
2003年 | 75篇 |
2002年 | 65篇 |
2001年 | 24篇 |
2000年 | 28篇 |
1999年 | 29篇 |
1998年 | 10篇 |
1997年 | 12篇 |
1996年 | 5篇 |
1995年 | 12篇 |
1994年 | 10篇 |
1993年 | 14篇 |
1992年 | 26篇 |
1991年 | 24篇 |
1990年 | 22篇 |
1989年 | 19篇 |
1988年 | 11篇 |
1987年 | 18篇 |
1986年 | 10篇 |
1985年 | 17篇 |
1984年 | 15篇 |
1983年 | 19篇 |
1982年 | 19篇 |
1981年 | 17篇 |
1980年 | 5篇 |
1979年 | 13篇 |
1978年 | 14篇 |
1976年 | 10篇 |
1975年 | 6篇 |
1974年 | 9篇 |
1973年 | 5篇 |
1972年 | 9篇 |
排序方式: 共有1780条查询结果,搜索用时 15 毫秒
91.
We have previously detected two brain-specific and development-dependent N-glycans [H. Shimizu, K. Ochiai, K. Ikenaka, K. Mikoshiba, and S. Hase (1993) J. Biochem. 114, 334-338]. In the present study we attempted to analyze specific N-glycans detected in neurological mutant mice. N-glycans in cerebrum and cerebellum obtained from 3-week-old neurological mutant mice (jimpy, staggerer, and shiverer) were compared with those obtained from normal mice. N-glycans liberated from the cerebrum and cerebellum by hydrazinolysis-N-acetylation were pyridylaminated, and pyridylamino derivatives of N-glycans thus obtained were separated into neutral and five acidic fractions by anion exchange chromatography. PA-N-glycans in each fraction were compared with those obtained from normal mice by reversed-phase HPLC, and the following results were obtained. The ratio of the two brain-type N-glycans, Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-1) to GlcNAcbetaManalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fuca1-6)GlcNAc (BA-2), was higher in staggerer mice than other mutant mice and normal mice. Sia-Gal-BA-2, triantennary N-glycans, and bisected biantennary N-glycans were found in the cerebellum of shiverer and staggerer mice but not in normal or jimpy mice. High-mannose type N-glycans were not altered in mutant mice brains. The amounts of disialylbiantennary N-glycans and disialylfucosylbiantennary N-glycans were lower in jimpy mouse cerebellum than in normal mouse cerebellum, but were higher in shiverer mouse. Some alterations of N-glycans specific to mutations were successfully identified, suggesting that expression of component(s) of the N-glycan biosynthetic pathway was specifically affected in neurological mutations. 相似文献
92.
A Yoshiki M Hanazono S Oda N Wakasugi T Sakakura M Kusakabe 《Development (Cambridge, England)》1991,113(4):1293-1304
This study investigates the primary effect of the eye lens obsolescence (Elo) gene of the mouse. Morphological features of the Elo lens were defined as follows: (1) deficient elongation of lens fiber cells, (2) morphological abnormality of nuclei of lens fiber cells, (3) lack of eosinophilic granules in the central fiber cells and (4) rupture of lens capsule in the posterior region. We have immunohistologically examined, by means of an in vivo BrdU incorporation system, whether or not the Elo gene regulates cell proliferation during lens development. The lens fiber cells were morphologically abnormal in day 13 embryonic Elo lens. However, there were no significant differences in morphology or cell proliferation between normal and Elo lens epithelium until day 14 of gestation. After day 15, the total cell number in the Elo lens epithelium was significantly less than that in the normal, but the total numbers of S-phase cells in the two genotypes were not significantly different. The ratio of the total S-phase cell number to the total number of lens epithelial cells may be affected by the developmental stage, but not directly by the genotype. The genotype, however, may be having a direct influence at later ages because malformation of Elo lens fiber cells must cause reduction of the total number of lens epithelial cells in older embryos. Although, at 30 days old, Elo lens cells were externally extruded through the ruptured capsule into the vitreous cavity, BrdU-labelled lens epithelial cells were detectable. To investigate whether the Elo lens phenotype is determined by its own genotype or by its cellular environment, we produced aggregation chimeras between C3H-Elo/+(C/C) and BALB/c(c/c). Most lenses of BALB/c dominant chimeras were oval in shape without the ruptured lens capsule. However, they were opaque in the center and slightly smaller in size than normal. The lenses of C3H-Elo/+ dominant chimeras were morphologically similar to the Elo lens. Although normal nuclei were regularly arranged in the anterior region, Elo-type nuclei were located in the posterior region. Immunohistological staining by using anti-C3H strain-specific antibody demonstrated that the lens fiber cells with abnormal nuclei were derived only from C3H-Elo/+, not from BALB/c. These observations suggest that the primary effect of the Elo gene in the developing lens may be specific to the fiber cell differentiation rather than to the cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
93.
Suenaga K Lee KY Nakamori M Tatsumi Y Takahashi MP Fujimura H Jinnai K Yoshikawa H Du H Ares M Swanson MS Kimura T 《PloS one》2012,7(3):e33218
Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTG(exp)) in the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1) explains the majority of the alternative splicing defects observed in the HSA(LR) transgenic mouse model which expresses a pathogenic range CTG(exp). In the present study, we addressed the possibility that MBNL1 sequestration by CUG(exp) RNA also contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1(ΔE3/ΔE3) knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons identified by microarray analysis with brain tissues from Mbnl1(ΔE3/ΔE3) knockout mice and post-mortem DM1 patients. Surprisingly, splicing-sensitive microarray analysis of Mbnl1(ΔE3/ΔE3) brains yielded only 14 candidates for mis-spliced exons. While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUG(exp) RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain. 相似文献
94.
Assembly of initiation factors on individual replication origins at onset of S phase is crucial for regulation of replication timing and repression of initiation by S-phase checkpoint control. We dissected the process of preinitiation complex formation using a point mutation in fission yeast nda4-108/mcm5 that shows tight genetic interactions with sna41(+)/cdc45(+). The mutation does not affect loading of MCM complex onto origins, but impairs Cdc45-loading, presumably because of a defect in interaction of MCM with Cdc45. In the mcm5 mutant, however, Sld3, which is required for Cdc45-loading, proficiently associates with origins. Origin-association of Sld3 without Cdc45 is also observed in the sna41/cdc45 mutant. These results suggest that Sld3-loading is independent of Cdc45-loading, which is different from those observed in budding yeast. Interestingly, returning the arrested mcm5 cells to the permissive temperature results in immediate loading of Cdc45 to the origin and resumption of DNA replication. These results suggest that the complex containing MCM and Sld3 is an intermediate for initiation of DNA replication in fission yeast. 相似文献
95.
Onishi A Hasegawa J Imai H Chisaka O Ueda Y Honda Y Tachibana M Shichida Y 《Zoological science》2005,22(10):1145-1156
Red-green color vision in primates is unique in the sense that it is mediated by two photoreceptor cells that are indistinguishable in all aspects except for their visual pigments. In order to generate an animal model for investigation of the interaction between red-green inputs at the molecular level, we applied knock-in technology and X-chromosome inactivation machinery to make a mouse model with cone cells possessing visual pigments with different spectral sensitivities. We introduced a S308A point mutation into the Green opsin gene allele on the X-chromosome. This manipulation generated a 24 nm red-shift of absorption maximum in the cone pigment with negligible functional differences in other molecular properties. Amplitudes of responses in ERG and ganglion cell recordings of homozygotes were similar to those of wild-types, although the spectral sensitivities differed. Heterozygotes showed variable spectral sensitivities of ganglion cell responses due to the different integration of the native and the S308A cone inputs on the dendritic fields. In situ hybridization experiments showed that cone cells with respective pigments formed patch-like clusters of specific L cone-types, approximately 30 mum in diameter, which were randomly distributed in the dorsal region of the retinas. Since the patch-like clustering was arranged by X-inactivation, such clustering could be present in the peripheral retinas of New World monkeys with polymorphic L pigments, indicating that our mice would be a suitable model to study evolution of the mammalian color vision system. 相似文献
96.
Toyoda T Mochizuki Y Player K Heida N Kobayashi N Sakaki Y 《Bioinformatics (Oxford, England)》2007,23(4):524-526
OmicBrowse is a browser to explore multiple datasets coordinated in the multidimensional omic space integrating omics knowledge ranging from genomes to phenomes and connecting evolutional correspondences among multiple species. OmicBrowse integrates multiple data servers into a single omic space through secure peer-to-peer server communications, so that a user can easily obtain an integrated view of distributed data servers, e.g. an integrated view of numerous whole-genome tiling-array data retrieved from a user's in-house private-data server, along with various genomic annotations from public internet servers. OmicBrowse is especially appropriate for positional-cloning purposes. It displays both genetic maps and genomic annotations within wide chromosomal intervals and assists a user to select candidate genes by filtering their annotations or associated documents against user-specified keywords or ontology terms. We also show that an omic-space chart effectively represents schemes for integrating multiple datasets of multiple species. Availability: OmicBrowse is developed by the Genome-Phenome Superbrain Project and is released as free open-source software under the GNU General Public License at http://omicspace.riken.jp. 相似文献
97.
An endo-beta-mannosidase [EC 3.2.1.152, glycoside hydrolase family 2], which hydrolyzes the Manbeta1-4GlcNAc linkage of N-glycans in an endo-manner, has been found in plant tissues [Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M., and Hase, S. (2004) J. Biol. Chem. 279, 38555-38562]. So far, this glycosidase has been purified only from a monocot plant, a lily. Here, an endo-beta-mannosidase was purified from a dicot plant, cabbage (Brassica oleracea), and characterized. The cabbage endo-beta-mannosidase consists of four polypeptides. These four polypeptides are encoded by a single gene, whose nucleotide sequence is homologous to those of the lily and Arabidopsis endo-beta-mannosidase genes. 1H NMR analysis of the stereochemistry of the hydrolysis of pyridylaminated (PA) Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc showed that the cabbage endo-beta-mannosidase is a retaining glycoside hydrolase, as are other glycoside hydrolase family 2 enzymes. The enzymatic characteristics, including substrate specificity, of the cabbage enzyme are very similar to those of the lily enzyme. These endo-beta-mannosidases specifically act on Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA (n = 0 to 2). These results suggest that the endo-beta-mannosidase is present in at least the angiosperms, and has common roles, such as the degradation of N-glycans. 相似文献
98.
Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice 下载免费PDF全文
Sakurai K Onishi A Imai H Chisaka O Ueda Y Usukura J Nakatani K Shichida Y 《The Journal of general physiology》2007,130(1):21-40
Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was approximately 11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 x 10(-7) s(-1), about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision. 相似文献
99.
Kaseda R Iino N Hosojima M Takeda T Hosaka K Kobayashi A Yamamoto K Suzuki A Kasai A Suzuki Y Gejyo F Saito A 《Biochemical and biophysical research communications》2007,357(4):1130-1134
Serum levels of cystatin C, an endogenous cysteine proteinase inhibitor, are often used as an indicator of glomerular filtration rate. Although it is known that cystatin C is filtered by glomeruli and metabolized in proximal tubule cells (PTC), the precise molecular mechanism underlying this process is undetermined. Using quartz-crystal microbalance analyses, we demonstrate that cystatin C binds directly to megalin, an endocytic receptor in PTC, in a Ca(+)-dependent manner. We also find that cystatin C is endocytosed specifically via megalin in rat yolk sac epithelium-derived L2 cells which share a variety of characteristics with PTC. Finally, in vivo studies using kidney-specific megalin knockout mice provide evidence that megalin mediates proximal tubular uptake of cystatin C. We conclude that megalin is an endocytic receptor of cystatin C in PTC. 相似文献
100.