首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   60篇
  国内免费   1篇
  2022年   11篇
  2021年   15篇
  2020年   10篇
  2019年   17篇
  2018年   19篇
  2017年   14篇
  2016年   26篇
  2015年   58篇
  2014年   61篇
  2013年   185篇
  2012年   93篇
  2011年   83篇
  2010年   70篇
  2009年   42篇
  2008年   85篇
  2007年   80篇
  2006年   59篇
  2005年   65篇
  2004年   63篇
  2003年   61篇
  2002年   54篇
  2001年   15篇
  2000年   19篇
  1999年   17篇
  1998年   7篇
  1997年   13篇
  1996年   6篇
  1995年   9篇
  1994年   10篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   12篇
  1989年   10篇
  1988年   5篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   11篇
  1980年   3篇
  1979年   4篇
  1977年   4篇
  1976年   5篇
  1974年   9篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有1415条查询结果,搜索用时 31 毫秒
51.
The genetically modified (GM) maize MON 88017 facilitates weed management owing to its tolerance to glyphosate, and resists western corn rootworm (WCR), Diabrotica virgifera virgifera, owing to the expression of Cry3Bb1 toxin. MON 88017 could therefore contribute to the solution of two major problems of European agriculture: continuous WCR spreading and high use of herbicides. To assess possible unwanted environmental impacts of MON 88017, we compared communities of spiders in plots planted in three successive years with this maize, its near isogenic non‐GM cultivar treated or not treated with an insecticide and two unrelated maize cultivars. Each of the five treatments was applied on five 0.5 ha plots in a 14 ha field. Spiders were collected in five pitfall traps per plot five times per year. Upon reaching the waxy ripening stage, all plants of first‐year cultivation were shredded to small pieces and ploughed into the soil in the respective plot, whereas in the 2nd and 3rd year the harvest was used for biogas production and only digestate was returned to the field. Out of 79 spider species, Pardosa agrestis, Pachygnatha degeeri and Oedothorax apicatus made up 28%, 25% and 23% of the total spider count in the 1st year of study; 2%, 8% and 84% in the 2nd; and 40%, 8% and 35% in the 3rd year. Statistical analysis did not reveal any influence of GM maize on the spider abundance and biodiversity. The abundance, and in two years also the species diversity, was insignificantly higher on the plots with GM maize than on plots with the insecticide‐treated non‐GM maize. The composition and size of spider community varied year to year, probably reflecting weather conditions and differences in field fertilization with organic matter.  相似文献   
52.
An obligate methanol-utilizing bacterium, Methylomonas sp. YK 1, was isolated and used as a cytochrome c producer. The strain was mutagenized so as to be resistant to metabolic inhibitors related to the function of cytochrome c. The strain, YK 56, which was derived as a KCN-resistant mutant contained 3 times the cellular level of cytochrome c compared to the parent strain. Optimization of the culture conditions for the mutant to enhance the cytochrome c productivity was performed. Peptone, succinate, l-malate or FeSO4 · 7H2O increased the productivity when added to the culture medium. Under the optimal culture conditions, strain YK 56 produced about 60 mg cytochrome c per liter when methanol and peptone were fed to the medium during the cultivation.  相似文献   
53.
Vitamin B6 is synthesized by green Cytisus scoparius callus and green Phellodendron amurense callus cultured on Linsmaier and Skoog Agar-medium with 10?5m of ±-naphthaleneacetic acid (NAA) and 10?6 m of 6-benzyladenine (BA). Even when thiamine and inositol were omitted from this medium, the growth and vitamin B6 content of Cytisus scoparius callus did not change. Vitamin B6 contents of clones of the calluses varied and were unstable during long-term subculture. Clonal selection was repeated to obtain stable strains with high vitamin B6 content, and the vitamin B6 content of one strain of green Cytisus scoparius callus became 4-times higher than that of the green leaves.  相似文献   
54.
The structures of alkyl radicals generated in several methyl esters of fatty acids by irradiation with UV light were studied by the spin trapping technique. A spin trap, deuterated nitrosodurene, traps alkyl radicals in both saturated and unsaturated esters at the ambient temperature. The trapped radicals and their hyperfine splitting constants from several esters were as follows: pentadienyl radicals (aN= 13.8 ~ 14.0 G, aH = 5.9 ~ 6.0 G) from methyl linoleate, linolenate and docosahexaenoate; allyl radicals (aN = 13.9 G, aH = 6.8 G) and α-carbon radicals (aN = 13.3 G, aH = 10.0 G) from methyl oleate and elaidate; α-carbon radicals (aN = 13.3 ~ 13.4 G, aH = 9.6 ~ 10.0 G) and secondary alkyl radicals (aN = 13.9 G, aH = 6.8 ~ 7.2 G) from saturated esters.  相似文献   
55.
An α-glucosidase and a glucoamylase have been isolated from fruit bodies of Lentinus edodes (Berk.) Sing., by a procedure including fractionation with ammonium sulfate, DEAE-cellulose column chromatography, and preparative gel electrofocusing. Both of them were homogeneous on gel electrofocusing and ultracentrifugation. The molecular weight of α-glucosidase and glucoamylase was 51,000 and 55,000, respectively. The α-glucosidase hydrolyzed maltose, maltotriose, phenyl α-maltoside, amylose, and soluble starch, but did not act on sucrose. The glucoamylase hydrolyzed maltose, maltotriose, phenyl α-maltoside, soluble starch, amylose, amylopectin, and glycogen, glucose being the sole product formed in the digests of these substrates. Both enzymes hydrolyzed phenyl a-maltoside into glucose and phenyl α-glucoside. The glucoamylase hydrolyzed soluble starch, amylose, amylopectin, and glycogen, converting them almost completely into glucose. It was found that β-glucose was liberated from amylose by the action of glucoamylase, while α-glucose was produced by the α-glucosidase.

Maltotriose was the main α-glucosyltransfer product formed from maltose by the α-glucosidase.  相似文献   
56.
A novel dioxygenase, lignostilbene-a,β-dioxygenase (LSD), which catalyzes cleavage of the interphenyl double bond of lignin-derived stilbenes, was isolated. Four isozymes of LSD were separated from cell-free extracts of Pseudomonas sp. TMY1009 by ion-exchange chromatography on a DEAE- Toyopearl column. The major isozyme, LSD-I, was purified to electrophoretic homogeneity and characterized.

LSD-I cleaved the interphenyl double bond of l,2-bis(4′-hydroxy-3′-methoxyphenyl)ethylene with the optimum pH at 8.5. The Km of LSD-I was 11 μm for the stilbene and 110/iM for oxygen. The molecular weight of LSD-I, which is composed of two identical subunits, was estimated to be 94,000. LSD-I contained 1 g atom of iron per 1 mol of enzyme protein.  相似文献   
57.
Dimethylglycine oxidase was purified to homogeneity from the cell extract of Cylindrocarpon didymum M–1, aerobically grown in medium containing betaine as the carbon source. The molecular weight of the enzyme was estimated to be 170,000 by the gel filtration method and 180,000 by the sedimentation velocity method. The enzyme exhibited an absorption spectrum characteristic of a flavoprotein with absorption maxima at 277, 345 and 450 nm. The enzyme consisted of two identical subunits with a molecular weight of 82,000, and contained two mol of FAD per mol of enzyme. The flavin was shown to be covalently bound to the protein. The enzyme was inactivated by Ag+, Hg2+, Zn2+ and iodoacetate. The enzyme oxidized dimethylglycine but was inert toward choline, betaine, sarcosine and alkylamines. Km and Vmax values for dimethylglycine were 9.1 mm and 1.22 μmol/min/mg, respectively. The enzyme catalyzed the following reaction: Dimethylglycine+O2+H2O → sarcosine+formaldehyde+H2O2.  相似文献   
58.
The distribution of acyl-CoA synthetase was investigated among microorganisms. High enzyme activity was found in some strains in genera of Pseudomonas, Fusarium, Gibberella and Cylindrocarpon, and in many strains of basidiomycetes. There were two groups in respect to enzyme formation. The enzyme activities of Escherichia, Klebsiella, Enterobacter, Citrobacter and Serratia were detected only when they were grown with fatty acids as the carbon source. On the other hand, the activities of many fungal strains and pseudomonads were easily detected regardless of the carbon source for growth.

Gel filtration on Sephadex G-200 showed that the enzymes of Escherichia coli and Gibberella fujikuroi were mostly present around the void volume of the column and retarded by the gel after treatment with Triton X-100. Pseudomonas aeruginosa produced two kinds of enzymes, one was eluted around the void volume of the column and the other retarded by the gel. This elution pattern did not change upon treatment with Triton X-100. Some catalytic properties of acyl-CoA synthetases from P. aeruginosa and G. fujikuroi were also described.  相似文献   
59.
Substrate and inhibitor specificities, and transglucosylation action of crystalline α-glucosidase from the mycelia of Mucor javanicus have been investigated. The enzyme hydrolyzed maltose, methyl-α-maltoside, and soluble starch liberating glucose, but little or not phenyl-α-glucoside, methyl-α-glucoside, sucrose, isomaltose, panose and dextran. The enzyme hydrolyzed phenyl-α-maltoside to glucose and phenyl-α-glucoside. The enzyme acted also as a glucosyltransferase when it was incubated with glucosyl donor such as maltose. Maltotriose was the principal transglucosylation product formed from maltose. The enzyme also catalyzed transglucosylation from maltose to riboflavin, pyridoxine, esculin and rutin. Tris and turanose inhibited the enzyme activity, but PCMB and EDTA did not. It is suggested that the enzyme activity is closely related to the histidine residue in the active center, from the inhibition experiments using diazonium-1-H-tetrazole and rose bengal.  相似文献   
60.
Escherichia freundii alkaline phosphatase was found in a membrane fraction and was purified by procedures involving spheroplast formation with lysozyme and EDTA, and DEAE-cellulose and Sephadex G-150 column chromatographies. Then this enzyme along with other phosphatases was investigated on the ability to transfer the phosphoryl group from p-nitrophenyl phosphate to pyridoxine. It was found that the ability of the transphosphorylation varied with these phosphatases. The transphosphorylation to hydroxy compounds such as alcohols, sugars and nucleosides was also compared. Escherichia freundii acid phosphatase showed the highest activity of transphosphorylation among phosphatases tested. The mechanism of transphosphorylation was discussed.

An enzyme, pyridoxamine 5′-phosphate transaminase, was purified from the cell-free extract of Clostridium kainantoi. The purification procedures involved ammonium sulfate fractionation, protamine sulfate treatment and, DEAE-cellulose, hydroxylapatite, DEAE-Sephadex and Sephadex G-200 column chromatographies. The purified enzyme, which had approximately 2700-fold higher specific activity over the original extract, showed a single schlieren pattern in the ultracentrifuge. From the spectral analysis, it seemed that pyridoxamine 5′-phosphate transaminase did not contain pyridoxal 5′-phosphate as a prosthetic group. It was recognized that the transamination was accelerated by the addition of amino acid and was inhibited by diisopropyl phosphofluoride. Glutamic acid formed in the reaction was identified to be a D-isomer. A study on the substrate specificity showed that the enzyme might be possible to be specific for pyridoxamine 5′-phosphate.

The extracellular formation of vitamin B6 was searched in marine and terrestrial microorganisms. Two bacterial strains were selected and were identified as Vibrio and Flavobacterium, respectively. Marine microorganisms showed the considerable formation of vitamin B6 and the presence of vitamin B6 in sea water was also recognized. The cultural and reaction conditions for vitamin B6 formation by these strains were investigated. Glycerol was commonly the most effective compound on vitamin B6 formation among the compounds tested. It was suggested that both bacteria did not have the control system on vitamin B6 biosynthesis by the amount of possible end products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号