首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1427篇
  免费   72篇
  国内免费   3篇
  2021年   6篇
  2020年   4篇
  2019年   12篇
  2018年   21篇
  2017年   16篇
  2016年   32篇
  2015年   35篇
  2014年   45篇
  2013年   118篇
  2012年   70篇
  2011年   90篇
  2010年   52篇
  2009年   45篇
  2008年   99篇
  2007年   100篇
  2006年   85篇
  2005年   92篇
  2004年   79篇
  2003年   79篇
  2002年   70篇
  2001年   24篇
  2000年   16篇
  1999年   19篇
  1998年   21篇
  1997年   22篇
  1996年   19篇
  1995年   23篇
  1994年   16篇
  1993年   12篇
  1992年   18篇
  1991年   19篇
  1990年   8篇
  1989年   17篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   7篇
  1984年   9篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   10篇
  1979年   8篇
  1978年   3篇
  1977年   7篇
  1976年   7篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1966年   2篇
排序方式: 共有1502条查询结果,搜索用时 15 毫秒
71.
Monoclonal antibodies (mAbs) against not only human, mouse, and rat but also rabbit, dog, cat, bovine, pig, and horse podoplanins (PDPNs) have been established in our previous studies. PDPN is used as a lymphatic endothelial cell marker in pathological diagnoses. However, mAbs against Tasmanian devil PDPN (tasPDPN), which are useful for immunohistochemical analysis, remain to be developed. Herein, mice were immunized with tasPDPN-overexpressing Chinese hamster ovary (CHO)-K1 (CHO/tasPDPN) cells, and hybridomas producing mAbs against tasPDPN were screened using flow cytometry. One of the mAbs, PMab-233 (IgG1, kappa), specifically detected CHO/tasPDPN cells by flow cytometry and recognized tasPDPN protein by western blotting. Furthermore, PMab-233 strongly detected CHO/tasPDPN cells by immunohistochemistry. These findings suggest that PMab-233 may be useful as a lymphatic endothelial cell marker of the Tasmanian devil.  相似文献   
72.
Accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in DNA is associated with mutagenesis and cell death. Little attention has been given to the biological significance of 8-oxo-dG accumulation in cardiovascular tissues during the different stage of hypertension and its prevention. We thus investigated the levels and localization of both 8-oxo-dG accumulation and expression of MTH1, which hydrolyzes 8-oxo-dGTP to prevent its incorporation into DNA, in the thoracic aorta prepared from stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wister-Kyoto rats (WKY), aged 5-32 weeks. HPLC-MS/MS analysis revealed that the levels of nuclear 8-oxo-dG in the aorta increased significantly in SHRSP, but not WKY, with aging. Immunohistochemical study revealed that both TUNEL reactivity and 8-oxo-dG immunoreactivity were increased in smooth muscle cells (SMC) and endothelial cells (EC) of the aorta with aging, and they exhibited similar distributions in serial sections. The number of 8-oxo-dG and TUNEL positive cells in EC, but not in SMC, was significantly higher in SHRSP than WKY at 32 weeks of age. In contrast, the expression levels of Mth1mRNA and MTH1 protein in the aorta were similarly decreased both in SHRSP and WKY with aging. However, the number of MTH1 expressing EC was remarkably increased in the older SHRSP compared to the younger ones or age-matched WKY. Hypertension significantly increased not only 8-oxo-dG accumulation but also the expression of MTH1 in EC of the aorta during aging. While accumulation of 8-oxo-dG in SMC of the aorta was slightly increased, the expression of MTH1 protein in SMC was rather decreased by hypertension. We thus suggest that MTH1 may protect EC in the aorta from the oxidative damage increased by hypertension.  相似文献   
73.
Yeast cell morphology can be treated as a quantitative trait using the image processing software CalMorph. In the present study, we investigated Ca(2+)-induced morphological changes in Ca(2+)-sensitive (cls) mutants of Saccharomyces cerevisiae, based on the discovery that the characteristic Ca(2+)-induced morphological changes in the Ca(2+)-sensitive mutant zds1 reflect changes in the Ca(2+) signaling-mediated cell cycle control pathway. By applying hierarchical cluster analysis to the quantitative morphological data of 58 cls mutants, 31 of these mutants were classified into seven classes based on morphological similarities. The patterns of morphological change induced by Ca(2+) in one class differed from those of another class. Based on the results obtained using versatile methods for phenotypic analysis, we conclude that a high concentration of Ca(2+) exerts a wide variety of effects on yeast and that there are multiple Ca(2+)-regulatory pathways that are distinct from the Zds1p-related pathway.  相似文献   
74.
Endolichenic fungi, nonobligate microfungi that live in lichen, are promising as new bioresources of pharmacological compounds. We found that norlichexanthone isolated from the endolichenic fungus in Pertusaria laeviganda exhibited high antioxidant activity. Norlichexanthone produced by endolichenic fungus had the antioxidant activity with same level of ascorbic acid. This is the first report of high antioxidant activity of norlichexanthone.

Abbreviations: AAPH: 2,2?-azobis (2-methylpropionamidine) dihydrochloride; DPPH: 2,2-diphenyl-1-picrylhydrazyl; FL: fluorescein sodium salt; HPLC-PDA: high-performance liquid chromatography with photodiode array; LC-ESI-MS: liquid chromatography with electrospray ionization mass spectrometry; ORAC: oxygen radical absorbance capacity; PB: phosphate buffer; ROS: reactive oxygen species; TLC: thin-layer chromatography  相似文献   

75.
Abstract Transposon mutagenesis was performed to pursue the molecular basis of carbazole catabolic pathway in a carbazple-using bacterium, Pseudomonas sp. CA10. One mutant, TD2, was capable of using anthranilic acid but not carbazole as its sole source of carbon, nitrogen, and energy. Another isolated mutant, designated as TE1, was found to have the opposite ability as TD2. TD2 could not convert carbazole to any other compound under cometabolic conditions. On the other hand, TE1 accumulated catechol and cis,cis -muconate from carbazole. The clone containing Tn 5 -flanking region from TD2, showed the meta -cleavage activity for biphenyl-2,3-diol and analysis of the DNA sequence of this region suggests that the genes involved in the degradation of aromatic compounds are clustered. Our analysis of the DNA sequence of another clone from mutant TE1 showed that the Tn 5 -Mob can be inserted into the homologous catR gene, a gene that reportedly enpodes the positive regulatory protein of the catBC operon. These data suggests that carbazole catabolic pathway comprises at least two different gene clusters (upper pathway and lower pathway) in Pseudomonas sp. CA10.  相似文献   
76.
1,3-beta-D-Glucan, a major filamentous component of the cell wall in the budding yeast Saccharomyces cerevisiae, is synthesized by 1,3-beta-glucan synthase (GS). Although a yeast gene whose product is required for GS activity in vitro, GNS1, was isolated and characterized, its role in GS function has remained unknown. In the current study we show that Deltagns1 cells accumulate a non-competitive and non-proteinous inhibitor(s) in the membrane fraction. Investigations of inhibitory activity on GS revealed that the inhibitor(s) is mainly present in the sphingolipid fraction. It is shown that Deltagns1 cells contain phytosphingosine (PHS), an intermediate in the sphingolipid biosynthesis, 30-fold more than wild-type cells do. The membrane fraction isolated from Deltasur2 cells contains an increased amount of dihydrosphingosine (DHS) and also exhibits reduced GS activity. Among constituents of the sphingolipid fraction, PHS and DHS show striking inhibition in a non-competitive manner. The intracellular level of DHS is much lower than that of PHS in wild-type cells, suggesting that PHS is the primary inhibitor of GS in vivo. The localization of PHS to the endoplasmic reticulum in wild-type cells coincides with that of the inhibitor(s) in Deltagns1 cells. Taken together, our results indicate that PHS is a potent inhibitor of yeast GS in vivo.  相似文献   
77.
Saccharomyces cerevisiae is a multifunctional molecular switch involved in establishment of cell morphogenesis. We systematically characterized isolated temperature-sensitive mutations in the RHO1 gene and identified two groups of rho1 mutations (rho1A and rho1B) possessing distinct functional defects. Biochemical and cytological analyses demonstrated that mutant cells of the rho1A and rho1B groups have defects in activation of the Rho1p effectors Pkc1p kinase and 1,3-beta-glucan synthase, respectively. Heteroallelic diploid strains with rho1A and rho1B mutations were able to grow even at the restrictive temperature of the corresponding homoallelic diploid strains, showing intragenic complementation. The ability to activate both of the essential Rho1p effector proteins was restored in the heteroallelic diploid. Thus, each of the complementing rho1 mutation groups abolishes a distinct function of Rho1p, activation of Pkc1p kinase or 1,3-beta-glucan synthase activity.  相似文献   
78.
Endonuclease-induced DNA fragmentation is a hallmark of apoptosis. DNase gamma (DNase ) was recently identified as one of the endonucleases responsible for apoptotic DNA fragmentation. In this study, immunohistochemistry for DNase was performed on paraffin sections of rodent liver in well-defined models of hepatocyte apoptosis induced by Fas antibody (Fas) or cycloheximide (CHX), and necrosis induced by lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). DNase immunoreactivity was compared with TdT-mediated dUTP nick-end labeling (TUNEL) reactivity. Our results showed TUNEL reactivity in both apoptotic and necrotic hepatocytes. DNase immunoreactivity was not detected during LPS-induced or CCl4-induced hepatocyte necrosis. In contrast, it was evident during CHX-induced, but not Fas-induced, apoptotic DNA fragmentation. These findings suggest that DNase plays an important role in Fas-independent apoptotic DNA fragmentation in hepatocytes.  相似文献   
79.
80.
Reactive oxygen species (ROS) produced during exercise may be involved in delayed-onset muscle damage related to inflammation. To investigate this hypothesis, we studied whether oxidative stress increases nuclear translocation of nuclear factor-kappaB and chemokine expression in skeletal muscle using myotube L6 cells. We also assessed whether prolonged acute exercise could increase these parameters in rats. In L6 cells, H(2)O(2) induced nuclear translocation of p65 and increased the expression of cytokine-induced neutrophil chemoattractant-1 (CINC-1) and monocyte chemoattractant protein-1 (MCP-1), whereas preincubation with alpha-tocopherol limited the increase in these proteins. Sprague Dawley rats were divided into the following groups: rested control, exercised, rested with a high alpha-tocopherol diet, and exercised with a high alpha-tocopherol diet. After 3 weeks of acclimation, both exercise groups ran on a treadmill at 25 m/min for 60 min. Exercise increased nuclear p65, CINC-1, and MCP-1 in gastrocnemius muscle cells, but these changes were ameliorated by the high alpha-tocopherol diet. Increases in myeloperoxidase and thiobarbituric acid-reactive substrates were ameliorated by a high alpha-tocopherol diet, as were the histological changes. Neutrophil activity was not altered by either exercise or a high alpha-tocopherol diet. These results indicate that delayed-onset muscle damage induced by prolonged exercise is partly related to inflammation via phagocyte infiltration caused by ROS and that alpha-tocopherol (an antioxidant) can attenuate such inflammatory changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号