首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1427篇
  免费   72篇
  国内免费   3篇
  2021年   6篇
  2020年   4篇
  2019年   12篇
  2018年   21篇
  2017年   16篇
  2016年   32篇
  2015年   35篇
  2014年   45篇
  2013年   118篇
  2012年   70篇
  2011年   90篇
  2010年   52篇
  2009年   45篇
  2008年   99篇
  2007年   100篇
  2006年   85篇
  2005年   92篇
  2004年   79篇
  2003年   79篇
  2002年   70篇
  2001年   24篇
  2000年   16篇
  1999年   19篇
  1998年   21篇
  1997年   22篇
  1996年   19篇
  1995年   23篇
  1994年   16篇
  1993年   12篇
  1992年   18篇
  1991年   19篇
  1990年   8篇
  1989年   17篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   7篇
  1984年   9篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   10篇
  1979年   8篇
  1978年   3篇
  1977年   7篇
  1976年   7篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1966年   2篇
排序方式: 共有1502条查询结果,搜索用时 125 毫秒
101.
The ribosomal peptidyl transferase center is responsible for two fundamental reactions, peptide bond formation and nascent peptide release, during the elongation and termination phases of protein synthesis, respectively. We used in vitro genetics to investigate the functional importance of conserved 23S rRNA nucleotides located in the peptidyl transferase active site for transpeptidation and peptidyl-tRNA hydrolysis. While mutations at A2451, U2585, and C2063 (E. coli numbering) did not significantly affect either of the reactions, substitution of A2602 with C or its deletion abolished the ribosome ability to promote peptide release but had little effect on transpeptidation. This indicates that the mechanism of peptide release is distinct from that of peptide bond formation, with A2602 playing a critical role in peptide release during translation termination.  相似文献   
102.
Spin probing methods using an electron spin resonance (ESR) spectrometer are used extensively and bring us a lot of information about in vivo redox mechanisms. However, the in vivo reducing mechanisms of exogenous nitroxide radicals, which serve as typical spin probing reagents are not clear. To clarify this, we examined the sequential kinetics of a spin probe, 4-hydroxy 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) in the in vivo organs, tissue homogenates and subcellular fractions of kidney and liver using an in vivo and X-band ESR spectrometers. As a parameter of reducing activity, we calculated the half-life of TEMPOL from the decay curve of ESR signal intensity. The half-life of TEMPOL in the whole organs and homogenates of the kidney was significantly shorter than that of the liver, this indicates that the kidney has more reducing activity against TEMPOL as compared to the liver. Subcellular fractional studies revealed that this reducing activity of the kidney mainly exists in the mitochondria. Contrarily, in addition to reduction in the mitochondria, TEMPOL in the liver was reduced by the microsome and cytosol.  相似文献   
103.
Apoptosis in the aging process   总被引:2,自引:0,他引:2  
Although many hypotheses have been proposed to explain the aging process, the exact mechanisms are not well defined. Recent accumulating evidence indicates that dysregulation of the apoptotic process may be involved in some aging processes; however, it is still debatable how exactly apoptosis is expressed during aging in vivo. In this review, we discuss recent findings related to apoptosis of individual organs during aging and their significance. We demonstrate that aging enhances apoptosis and susceptibility to apoptosis in several types of intact cells. In contrast, in certain genetically damaged, initiated, and preneoplastic cells, aging suppresses these age-associated apoptotic changes. In various cells, apoptosis enhances the elimination of damaged and dysfunctional cells presumably caused by oxidative stress, glycation, and DNA damage. In these cases, the incidence of apoptosis correlates with the level of accumulated injury. It is concluded that apoptosis plays an important role in the aging process and tumorigenesis in vivo probably as an inherent protective mechanism against age-associated tumorigenesis.  相似文献   
104.
DNA polymerase (Pol) of Saccharomyces cerevisiae is purified as a complex of four polypeptides with molecular masses of >250, 80, 34 (and 31) and 29 kDa as determined by SDS–PAGE. The genes POL2, DPB2 and DPB3, encoding the catalytic Pol2p, the second (Dpb2p) and the third largest subunits (Dpb3p) of the complex, respectively, were previously cloned and characterised. This paper reports the partial amino acid sequence of the fourth subunit (Dpb4p) of Pol. This protein sequence matches parts of the predicted amino acid sequence from the YDR121w open reading frame on S.cerevisiae chromosome IV. Thus, YDR121w was renamed DPB4. A deletion mutant of DPB4dpb4) is not lethal, but chromosomal DNA replication is slightly disturbed in this mutant. A double mutant haploid strain carrying the Δdpb4 deletion and either pol2-11 or dpb11-1 is lethal at all temperatures tested. Furthermore, the restrictive temperature of double mutants carrying Δdpb4 and dpb2-1, rad53-1 or rad53-21 is lower than in the corresponding single mutants. These results strongly suggest that Dpb4p plays an important role in maintaining the complex structure of Pol in S.cerevisiae, even if it is not essential for cell growth. Structural homologues of DPB4 are present in other eukaryotic genomes, suggesting that the complex structure of S.cerevisiae Pol is conserved in eukaryotes.  相似文献   
105.
106.
Acylation of anthocyanins with hydroxycinnamic acid derivatives is one of the most important and less understood modification reactions during anthocyanin biosynthesis. Anthocyanin aromatic acyltransferase catalyses the transfer of hydroxycinnamic acid moieties from their CoA esters to the glycosyl groups of anthocyanins. A full-length cDNA encoding the anthocyanin 5-aromatic acyltransferase (5AT) ( EC 2.3.1.153 ) that acylates the glucose bound at the 5-position of anthocyanidin 3,5-diglucoside was isolated from petals of Gentiana triflora on the basis of the amino acid sequence of the purified enzyme. The isolated full-length cDNA had an open reading frame of 469 amino acids and the calculated molecular weight was 52 736. The deduced amino acid sequence contains consensus motifs that are conserved among the putative acyl CoA-mediated acyltransferases, and this indicates that 5AT is a member of a proposed superfamily of multifunctional acyltransferases ( St-Pierre et al . (1998 ) Plant J. 14, 703–713). The cDNA was expressed in Escherichia coli and yeast, and confirmed to encode 5AT. The enzymatic characteristics of the recombinant 5AT were consistent with those of the native gentian 5AT. Immunoblot analysis using specific antibodies to 5AT showed that the 5AT protein is present in petals, but not in sepals, stems or leaves of G. triflora . RNA blot analysis showed that the 5AT gene is expressed only in petals and that its expression is temporally regulated during flower development coordinately with other anthocyanin biosynthetic genes. Immunohistochemical analysis demonstrated that the 5AT protein is specifically expressed in the outer epidermal cells of gentian petals and that it is localized mainly in the cytosol.  相似文献   
107.
Emericella appendiculata, a new species isolated from soil of the Pamire Plateau, is described and illustrated. It is characterized by grayish green non-ostiolate ascomata surrounded by a thick layer of hülle cells, membranaceous peridium, prototunicate asci, violet-brown, lenticular ascospores which are ornamented by two stellate equatorial crests, capitate convex surfaces, and long filiform appendages, and anAspergillus anamorph with biseriate conidiogenous cells.  相似文献   
108.
The synthesis is described of adiposin-1 (2a), isolated from an α-d-glucosidase inhibitor complex, adiposin, produced by Streptomyces caluvs TM-521. The synthesis involved the coupling of 1,6-anhydro-4-O-(3,4-anhydro-α-d-galactopyranosyl)-β-d-glucopyranose (13) with the di-O-isopropylidene derivative (7) of dl-(1,4,65)-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexenylamine. All possible diastereoisomers of the secondary amine were isolated by chromatography on silica gel. Their structures were tentatively assigned on the basis of 1H-n.m.r. spectroscopy and optical rotation. Likewise, both the core-structure (4) of adiposin and the saturated analog (22) of 2a were synthesized.  相似文献   
109.
Recessive skeletal dysplasia, characterized by joint- and/or hip bone-enlargement, was mapped within the critical region for a major quantitative trait locus (QTL) influencing carcass weight; previously named CW-3 in Japanese Black cattle. The risk allele was on the same chromosome as the Q allele that increases carcass weight. Phenotypic characterization revealed that the risk allele causes disproportional tall stature and bone size that increases carcass weight in heterozygous individuals but causes disproportionately narrow chest width in homozygotes. A non-synonymous variant of FGD3 was identified as a positional candidate quantitative trait nucleotide (QTN) and the corresponding mutant protein showed reduced activity as a guanine nucleotide exchange factor for Cdc42. FGD3 is expressed in the growth plate cartilage of femurs from bovine and mouse. Thus, loss of FDG3 activity may lead to subsequent loss of Cdc42 function. This would be consistent with the columnar disorganization of proliferating chondrocytes in chondrocyte-specific inactivated Cdc42 mutant mice. This is the first report showing association of FGD3 with skeletal dysplasia.  相似文献   
110.
Intracytoplasmic sperm injection (ICSI) has become the method of choice to treat human male infertility. One of the outstanding problems associated with this technique is our current lack of knowledge concerning the effect of sperm capacitation and motility upon the subsequent development of oocytes following ICSI. In the present study, we first examined the capacitation state of sperm exhibiting normal motility, along with sperm that had been activated, and examined the effect of reactive oxygen species (ROS) produced by these sperm types upon embryogenesis following bovine in vitro fertilization (IVF) and ICSI. Data showed that activated sperm reduced the chromosomal integrity of IVF/ICSI embryos at the blastocyst stage, while capacitated sperm produced ROS in capacitation media. Secondly, we treated sperm with carbonyl cyanide m-chlorophenyl hydrazine (CCCP), a chemical known to uncouple cell respiration within the mitochondria, and investigated the effect of this treatment upon blastocyst formation and chromosomal integrity at the blastocyst stage. Activated sperm in which the mitochondria had been treated with CCCP reduced levels of chromosomal aberration at the blastocyst stage following ICSI, by reducing mitochondrial activity in activated sperm. In conclusion, these findings suggest that capacitated sperm exhibiting activated motility induced chromosomal aberration during development to the blastocyst stage following ICSI. The injection of sperm exhibiting normal motility, or activated sperm in which mitochondrial activity had been reduced, improved the quality of ICSI-derived embryos. Therefore, the selection of sperm exhibiting progressive motility may not always be better for early embryo development and fetal growth following human ICSI, and that the use of a bovine model may contribute to a deeper understanding of sperm selection for human ICSI embryo development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号