首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2281篇
  免费   118篇
  国内免费   3篇
  2402篇
  2021年   9篇
  2019年   14篇
  2018年   33篇
  2017年   25篇
  2016年   47篇
  2015年   54篇
  2014年   68篇
  2013年   169篇
  2012年   102篇
  2011年   116篇
  2010年   73篇
  2009年   69篇
  2008年   128篇
  2007年   140篇
  2006年   120篇
  2005年   110篇
  2004年   125篇
  2003年   135篇
  2002年   113篇
  2001年   64篇
  2000年   74篇
  1999年   44篇
  1998年   35篇
  1997年   25篇
  1996年   27篇
  1995年   28篇
  1994年   19篇
  1993年   19篇
  1992年   39篇
  1991年   34篇
  1990年   18篇
  1989年   27篇
  1988年   24篇
  1987年   21篇
  1986年   17篇
  1985年   23篇
  1984年   17篇
  1983年   16篇
  1982年   18篇
  1981年   16篇
  1980年   16篇
  1979年   14篇
  1978年   12篇
  1977年   16篇
  1976年   10篇
  1975年   12篇
  1973年   7篇
  1970年   8篇
  1969年   7篇
  1967年   7篇
排序方式: 共有2402条查询结果,搜索用时 15 毫秒
91.
Apoptosis in the aging process   总被引:2,自引:0,他引:2  
Although many hypotheses have been proposed to explain the aging process, the exact mechanisms are not well defined. Recent accumulating evidence indicates that dysregulation of the apoptotic process may be involved in some aging processes; however, it is still debatable how exactly apoptosis is expressed during aging in vivo. In this review, we discuss recent findings related to apoptosis of individual organs during aging and their significance. We demonstrate that aging enhances apoptosis and susceptibility to apoptosis in several types of intact cells. In contrast, in certain genetically damaged, initiated, and preneoplastic cells, aging suppresses these age-associated apoptotic changes. In various cells, apoptosis enhances the elimination of damaged and dysfunctional cells presumably caused by oxidative stress, glycation, and DNA damage. In these cases, the incidence of apoptosis correlates with the level of accumulated injury. It is concluded that apoptosis plays an important role in the aging process and tumorigenesis in vivo probably as an inherent protective mechanism against age-associated tumorigenesis.  相似文献   
92.
AtCBR, a cDNA encoding NADH-cytochrome (Cyt) b5 reductase, and AtB5-A and AtB5-B, two cDNAs encoding Cyt b5, were isolated from Arabidopsis. The primary structure deduced from the AtCBR cDNA was 40% identical to those of the NADH-Cyt b5 reductases of yeast and mammals. A recombinant AtCBR protein prepared using a baculovirus system exhibited typical spectral properties of NADH-Cyt b5 reductase and was used to study its electron-transfer activity. The recombinant NADH-Cyt b5 reductase was functionally active and displayed strict specificity to NADH for the reduction of a recombinant Cyt b5 (AtB5-A), whereas no Cyt b5 reduction was observed when NADPH was used as the electron donor. Conversely, a recombinant NADPH-Cyt P450 reductase of Arabidopsis was able to reduce Cyt b5 with NADPH but not with NADH. To our knowledge, this is the first evidence in higher plants that both NADH-Cyt b5 reductase and NADPH-Cyt P450 reductase can reduce Cyt b5 and have clear specificities in terms of the electron donor, NADH or NADPH, respectively. This substrate specificity of the two reductases is discussed in relation to the NADH- and NADPH-dependent activities of microsomal fatty acid desaturases.  相似文献   
93.
Abstract Monoclonal antibodies (mAbs) have been produced by immunizing BALB/C mice with whole M+ bacteria in incomplete Freund adjuvant and the resulting mAbs for M3 protein have been selected by an indirect immuno-fluorescent technique using formaldehyde-fixed M+ and M bacteria. Four mAbs reacted with a 65 kDa protein in an extract obtained from the cell wall of M+ bacteria after treatment with N -acetyl muramidase and lysozyme. The purified 65 kDa protein neutralized the phagocytic activity of rabbit anti-M3 antibody. The N-terminal amino acid sequence of the 65 kDa protein was identical with that of protein generated by the M3 gene which has been previously cloned and sequenced. The evidence indicates that the 65 kDa protein is M3 protein. The M3 protein bound not only human fibrinogen but also human serum albumin (HSA). When the M3 protein was purified by gel-filtration and ion-exchange chromatography in the absence of phenylmethyl sulfonyl fluoride (PMSF), four fragments (35 kDa, 32 kDa, 30 kDa, and 25 kDa) in addition to the intact molecule appeared. N-terminal amino acid sequence analysis showed that 35 kDa and 25 kDa fragments were ANAAD and DARSV, respectively, being identical at positions 1–5 and 198–202 to the M3 gene derived protein. Therefore, the 35 kDa and 25 kDa fragments, which were presumed to be cleavage products, may be derived from the C-terminal part and N-terminal part of the intact molecule, respectively. When the effect of purified M3 protein in the bactericidal activity of normal human blood in the presence of M bacteria was investigated, the M3 protein was responsible for the organism's resistance to attack by phagocytic cells.  相似文献   
94.
During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.  相似文献   
95.
Diabodies (Dbs) and tandem single-chain variable fragments (taFv) are the most widely used recombinant formats for constructing small bispecific antibodies. However, only a few studies have compared these formats, and none have discussed their binding kinetics and cross-linking ability. We previously reported the usefulness for cancer immunotherapy of a humanized bispecific Db (hEx3-Db) and its single-chain format (hEx3-scDb) that target epidermal growth factor receptor and CD3. Here, we converted hEx3-Db into a taFv format to investigate how format affects the function of a small bispecific antibody; our investigation included a cytotoxicity assay, surface plasmon resonance spectroscopy, thermodynamic analysis, and flow cytometry. The prepared taFv (hEx3-taFv) showed an enhanced cytotoxicity, which may be attributable to a structural superiority to the diabody format in cross-linking target cells but not to differences in the binding affinities of the formats. Comparable cross-linking ability for soluble antigens was observed among hEx3-Db, hEx3-scDb, and hEx3-taFv with surface plasmon resonance spectroscopy. Furthermore, drastic increases in cytotoxicity were found in the dimeric form of hEx3-taFv, especially when the two hEx3-taFv were covalently linked. Our results show that converting the format of small bispecific antibodies can improve their function. In particular, for small bispecific antibodies that target tumor and immune cells, a functional orientation that avoids steric hindrance in cross-linking two target cells may be important in enhancing the growth inhibition effect.  相似文献   
96.
The antimicrobial compounds against the fish pathogen Photobacterium damselae subsp. piscicida were isolated from Polygonum sachalinense rhizomes. The structures of the antimicrobial compounds 1 and 2 were determined by 1H and 13C NMR, 2D-NMR (COSY, HSQC, HMBC and ROESY) and FAB-MS to be phenylpropanoid glycosides, vanicoside A and B, respectively. Both compounds have feruloyl and p-coumaroyl groups bonded to a sucrose moiety in their structures. Vanicoside A also has an acetyl group in the sucrose moiety. The MIC values for vanicoside A and B against Ph. damselae subsp. piscicida DPp-1 were 32 and 64 microg/ml, respectively. The antimicrobial activities of these vanicosides were modest, in contrast to higher activities (MICs at < 4 microg/ml) of antibiotics, florphenicol, ampicillin and amoxicillin, which have been generally used for treating pasteurellosis. The activities of the vanicosides, however, were higher than those (MICs at 256 microg/ml) of ferulic acid and p-coumaric acid. It was suggested that the structure of phenylpropanoids esterified with sucrose was essential for higher antimicrobial activity of vanicosides and also acetylation of sucrose might affect the activity against the bacterium.  相似文献   
97.
98.
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.  相似文献   
99.
Endoglycoceramidase catalyzes the hydrolysis of the linkage between oligosaccharides and ceramides of various glycosphingolipids. We found that a bacterial strain Corynebacterium sp., isolated from soil, produced endoglycoceramidase both intracellularly and extracellularly. The intracellular enzyme bound to the cell membrane was solubilized with 1% Triton X-100 and purified to homogeneity about 170-fold with 60% recovery. The molecular mass of the enzyme was approximately 65 kDa. The enzyme is most active at pH 5.5-6.5 and stable at pH 3.5-8.0. Various neutral and acidic glycosphingolipids were hydrolyzed by the enzyme in the presence of 0.1% Triton X-100. Ganglio- and lacto-type glycosphingolipids were readily hydrolyzed, but globo-type glycosphingolipids were hydrolyzed slowly.  相似文献   
100.
Suppression of biosynthetic genes involved in flower color formation is an important approach for obtaining target flower colors. Here we report that flower color of the garden plant Torenia hybrida was successfully modulated by RNA interference (RNAi) against a gene of chalcone synthase (CHS), a key enzyme for anthocyanin and flavonoid biosynthesis. By using each of the coding region and the 3'-untranslated region of the CHS mRNA as an RNAi target, exhaustive and gene-specific gene silencing were successfully induced, and the original blue flower color was modulated to white and pale colors, respectively. Our results indicate that RNAi is quite useful for modulations of flower colors of commercially important garden plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号