首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1321篇
  免费   66篇
  国内免费   3篇
  2021年   7篇
  2020年   4篇
  2019年   12篇
  2018年   21篇
  2017年   15篇
  2016年   33篇
  2015年   35篇
  2014年   47篇
  2013年   109篇
  2012年   67篇
  2011年   86篇
  2010年   54篇
  2009年   48篇
  2008年   93篇
  2007年   100篇
  2006年   81篇
  2005年   82篇
  2004年   74篇
  2003年   72篇
  2002年   63篇
  2001年   12篇
  2000年   13篇
  1999年   13篇
  1998年   18篇
  1997年   18篇
  1996年   20篇
  1995年   24篇
  1994年   12篇
  1993年   12篇
  1992年   12篇
  1991年   12篇
  1990年   5篇
  1989年   10篇
  1988年   12篇
  1987年   7篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1976年   7篇
  1975年   2篇
  1973年   4篇
  1972年   2篇
  1966年   2篇
排序方式: 共有1390条查询结果,搜索用时 203 毫秒
41.
Cationic liposomes are commonly used as vectors to effectively introduce foreign genes into target cells. In another function, we recently showed that cationic liposomes bound to the mast cell surface suppress the degranulation induced by the cross‐linking of high‐affinity immunoglobulin E receptor in a time‐ and dose‐dependent manner. This suppression is mediated by the impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via the inhibition of store‐operated Ca2+ entry. Further, we revealed that the mechanism underlying an impaired [Ca2+]i increase is the inhibition of the activation of the phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Yet, how cationic liposomes inhibit the PI3K‐Akt pathway is still unclear. Here, we focused on caveolin‐1, a major component of caveolae, which is reported to be involved in the activation of the PI3K‐Akt pathway in various cell lines. In this study, we showed that caveolin‐1 translocated from the cytoplasm to the plasma membrane after the activation of mast cells and colocalized with the p85 subunit of PI3K, which seemed to be essential for PI3K activity. Meanwhile, cationic liposomes suppressed the translocation of caveolin‐1 to the plasma membrane and the colocalization of caveolin‐1 with PI3K p85 also at the plasma membrane. This finding provides new information for the development of therapies using cationic liposomes against allergies.  相似文献   
42.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   
43.
The inhibitory effects of various fatty acids on three hyaluronidases (h-ST, h-SH and h-SD) and four chondroitinases (c-ABC, c-B, c-ACI and c-ACII) were examined, and their structure-activity relationships and mechanism of action were studied. The fatty acids used in this experiment showed various inhibitory activities against the enzymes. None of the fatty acids did not inhibit h-ST and h-SH. The saturated fatty acids (C 10:0 to C 22:0) showed very weak or no inhibition against h-SD, c-ABC, c-B, c-ACI and c-ACII but the unsaturated fatty acids (C 14:1 to C 24:1) with one double bond strongly inhibited the enzymes, and the inhibitory potency increased with increase in carbon chain length of the fatty acids. In contrast, the increase in number of double bonds caused a decrease in inhibitory potency against the enzymes. The position of the double bond and the stereochemistry of the cis - trans form of oleic acid (C 18:1) did not influence the inhibitory potency against the enzymes. Carboxyl and hydroxyl groups in the fatty acid molecule were concerned in the inhibition of c-ACI. Among the fatty acids, eicosatrienoic acid (C 20:3) generally inhibited h-SD, c-ABC, c-B and c-ACI, and nervonic acid (C 24:1) was a potent inhibitor of c-ACII, and the fatty acids inhibited the enzymes in a noncompetitive manner.  相似文献   
44.
Porcine induced pluripotent stem cells (iPSCs) provide useful information for translational research. The quality of iPSCs can be assessed by their ability to differentiate into various cell types after chimera formation. However, analysis of chimera formation in pigs is a labor‐intensive and costly process, necessitating a simple evaluation method for porcine iPSCs. Our previous study identified mouse embryonic stem cell (ESC)‐specific hypomethylated loci (EShypo‐T‐DMRs), and, in this study, 36 genes selected from these were used to evaluate porcine iPSC lines. Based on the methylation profiles of the 36 genes, the iPSC line, Porco Rosso‐4, was found closest to mouse pluripotent stem cells among 5 porcine iPSCs. Moreover, Porco Rosso‐4 more efficiently contributed to the inner cell mass (ICM) of blastocysts than the iPSC line showing the lowest reprogramming of the 36 genes (Porco Rosso‐622‐14), indicating that the DNA methylation profile correlates with efficiency of ICM contribution. Furthermore, factors known to enhance iPSC quality (serum‐free medium with PD0325901 and CHIR99021) improved the methylation status at the 36 genes. Thus, the DNA methylation profile of these 36 genes is a viable index for evaluation of porcine iPSCs. genesis 51:763–776. © 2013 Wiley Periodicals, Inc.  相似文献   
45.
Colon cancer is a malignancy that develops in colon and rectal tissues. The prognosis for metastatic colon cancer remains poor, and novel therapeutic options are required to reduce colon cancer mortality. Recently, intracellular cAMP levels have been suggested to influence the behavior of cancer cells. Intriguingly, cyclic phosphatidic acid (cPA) and its structural analogs inhibit growth in many cancer cell lines, and our previous work has suggested that cPA increases cAMP production. Phosphodiesterase (PDE) type 3 isoforms PDE3A and PDE3B are expressed mainly in cardiovascular tissue and adipose tissue, respectively. Moreover, increase in intracellular cAMP levels has been associated with the inhibition of growth in colon cancer cells. These findings suggest that cPA could be used in colon cancer therapy. In this study, we found that cPA inhibited the growth of HT-29 cells, which express high levels of PDE3B, but not the growth of DLD-1 cells, which express low levels of PDE3B. Furthermore, cPA inhibited the phosphorylation of Akt in HT-29 cells in a dose-dependent fashion. Our results suggest that PDE3B expression and intracellular cAMP levels are correlated with the proliferation of colon cancer cells. These findings demonstrate for the first time that cPA may serve as a useful a molecule in targeted therapy for colon cancer.  相似文献   
46.

Background

CHK1 is an important effector kinase that regulates the cell cycle checkpoint. Previously, we showed that CHK1 is cleaved in a caspase (CASP)-dependent manner during DNA damage-induced programmed cell death (PCD) and have examined its physiological roles.

Methods and results

In this study, we investigated the behavior of CHK1 in PCD. Firstly, we found that CHK1 is cleaved at three sites in PCD, and all cleavages were inhibited by the co-treatment of a pan-CASP inhibitor or serine protease inhibitors. We also showed that CHK1 is cleaved by CASP3 and/or CASP7 recognizing at 296SNLD299 and 348TCPD351, and that the cleavage results in the enhancement of CHK1 kinase activity. Furthermore, as a result of the characterization of cleavage sites by site-directed mutagenesis and an analysis performed using deletion mutants, we identified 320EPRT323 as an additional cleavage recognition sequence. Considering the consensus sequence cleaved by CASP, it is likely that CHK1 is cleaved by non-CASP family protease(s) recognizing at 320EPRT323. Additionally, the cleavage catalyzed by the 320EPRT323 protease(s) markedly and specifically increased when U2OS cells synchronized into G1 phase were induced to PCD by cisplatin treatment.

Conclusion

CHK1 cleavage is directly and indirectly regulated by CASP and non-CASP family proteases including serine protease(s) and the “320EPRT323 protease(s).” Furthermore, 320EPRT323 cleavage of CHK1 occurs efficiently in PCD which is induced at the G1 phase by DNA damage.

General significance

CASP and non-CASP family proteases intricately regulate cleavage for up-regulation of CHK1 kinase activity during PCD.  相似文献   
47.
Twenty novel simple alkyl isocyanides derived from citronellol were synthesized and evaluated for their antifouling activity and toxicity against cypris larvae of the barnacle, Balanus amphitrite. The anti-barnacle activity of the synthesized isocyanides was in the EC50 range of 0.08–1.49 μg ml?1. Simple isocyanides containing a benzoate and chloro group showed the most potent anti-barnacle activity. In addition, none of the synthesized compounds showed significant toxicity and LC50 values were <10 μg ml?1. The LC50/EC50 ratios of almost all of the synthesized compounds were >102. The results indicate that these simple isocyanides are promising low-toxicity antifouling agents.  相似文献   
48.
Enzymes synthesizing the bacterial CP (capsular polysaccharide) are attractive antimicrobial targets. However, we lack critical information about the structure and mechanism of many of them. In an effort to reduce that gap, we have determined three different crystal structures of the enzyme CapE of the human pathogen Staphylococcus aureus. The structure reveals that CapE is a member of the SDR (short-chain dehydrogenase/reductase) super-family of proteins. CapE assembles in a hexameric complex stabilized by three major contact surfaces between protein subunits. Turnover of substrate and/or coenzyme induces major conformational changes at the contact interface between protein subunits, and a displacement of the substrate-binding domain with respect to the Rossmann domain. A novel dynamic element that we called the latch is essential for remodelling of the protein–protein interface. Structural and primary sequence alignment identifies a group of SDR proteins involved in polysaccharide synthesis that share the two salient features of CapE: the mobile loop (latch) and a distinctive catalytic site (MxxxK). The relevance of these structural elements was evaluated by site-directed mutagenesis.  相似文献   
49.
NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) is a key enzyme in the synthesis of poly(3-hydroxybutyrate) [P(3HB)], along with β-ketothiolase (PhaA) and polyhydroxyalkanoate synthase (PhaC). In this study, PhaB from Ralstonia eutropha was engineered by means of directed evolution consisting of an error-prone PCR-mediated mutagenesis and a P(3HB) accumulation-based in vivo screening system using Escherichia coli. From approximately 20,000 mutants, we obtained two mutant candidates bearing Gln47Leu (Q47L) and Thr173Ser (T173S) substitutions. The mutants exhibited kcat values that were 2.4-fold and 3.5-fold higher than that of the wild-type enzyme, respectively. In fact, the PhaB mutants did exhibit enhanced activity and P(3HB) accumulation when expressed in recombinant Corynebacterium glutamicum. Comparative three-dimensional structural analysis of wild-type PhaB and highly active PhaB mutants revealed that the beneficial mutations affected the flexibility around the active site, which in turn played an important role in substrate recognition. Furthermore, both the kinetic analysis and crystal structure data supported the conclusion that PhaB forms a ternary complex with NADPH and acetoacetyl-CoA. These results suggest that the mutations affected the interaction with substrates, resulting in the acquirement of enhanced activity.  相似文献   
50.
To improve the efficacy of the conformationally restricted BACE1 inhibitors, structural modifications were investigated using two strategies: (a) modification of the terminal aromatic ring and (b) insertion of a spacer between the aromatic rings. In the latter approach, another type of inhibitor 17 bearing an ethylene spacer between two aromatic rings was found to exhibit good BACE1 inhibitory activity, while the corresponding conformationally unrestricted compound 25 showed no activity. This result revealed an interesting effect of a conformational restriction with a cyclopropane ring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号