首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   58篇
  国内免费   3篇
  1289篇
  2021年   6篇
  2020年   4篇
  2019年   12篇
  2018年   20篇
  2017年   15篇
  2016年   32篇
  2015年   32篇
  2014年   44篇
  2013年   106篇
  2012年   63篇
  2011年   81篇
  2010年   50篇
  2009年   45篇
  2008年   90篇
  2007年   91篇
  2006年   73篇
  2005年   77篇
  2004年   71篇
  2003年   69篇
  2002年   61篇
  2001年   10篇
  2000年   11篇
  1999年   12篇
  1998年   16篇
  1997年   17篇
  1996年   17篇
  1995年   23篇
  1994年   11篇
  1993年   10篇
  1992年   10篇
  1991年   8篇
  1990年   3篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1976年   7篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1966年   2篇
排序方式: 共有1289条查询结果,搜索用时 0 毫秒
91.
Suppression of biosynthetic genes involved in flower color formation is an important approach for obtaining target flower colors. Here we report that flower color of the garden plant Torenia hybrida was successfully modulated by RNA interference (RNAi) against a gene of chalcone synthase (CHS), a key enzyme for anthocyanin and flavonoid biosynthesis. By using each of the coding region and the 3'-untranslated region of the CHS mRNA as an RNAi target, exhaustive and gene-specific gene silencing were successfully induced, and the original blue flower color was modulated to white and pale colors, respectively. Our results indicate that RNAi is quite useful for modulations of flower colors of commercially important garden plants.  相似文献   
92.
Lefty, antivin and related genes act in a feedback inhibition mechanism for nodal signaling at a number of stages of vertebrate embryogenesis. To analyze the function of the feedback inhibitor of nodal signaling, Xantivin in Xenopus embryos, we designed a morpholino antisense oligonucleotide (XatvMO) for this gene. XatvMO caused the expansion of mesodermal tissue and head defects. XatvMO-injected gastrulae showed up-regulated expression of the mesodermal markers Xbra, Xwnt8, Xnot, and Chordin, suggesting expansion of the trunk-tail organizer. As expected, depletion of Xantivin also up-regulated nodal signaling as confirmed by the enhanced ectopic expression of Xantivin mRNA, a known target gene of nodal signaling. Furthermore, we investigated the relationship between Xantivin and the EGF-CFC gene FRL-1, which is a component of the nodal receptor. In animal cap assays, FRL-1 could not induce expression of nodal-responsive genes, but could up-regulate expression of these genes when FRL-1 was coinjected with a low dose of Xnr1; coinjection of Xantivin suppressed this up-regulation by FRL-1. We also found that Xantivin can rescue the caudalized phenotype induced by overexpression of FRL-1. Co-immunoprecipitation assays showed that Xantivin interacted with the EGF-CFC proteins, FRL-1 and cripto. Taken together, these results suggest that Xantivin opposes the activity of EGF-CFC genes and thereby antagonizes nodal signaling.  相似文献   
93.
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.  相似文献   
94.
We previously demonstrated that sustained disturbance of endothelium-dependent vasorelaxation and poor distal runoff in ischemic limbs were critical factors affecting the neointimal development of autologous vein grafts (VGs). Also, we recently showed the superior therapeutic potential of basic fibroblast growth factor (bFGF/FGF-2) boosted by the recombinant Sendai virus (SeV) for severe limb ischemia compared with that of vascular endothelial growth factor. Here, the effect of FGF-2 on neointimal hyperplasia of VGs was examined in a rabbit model of poor-runoff limbs. Two weeks after initial surgery for the induction of poor-runoff, SeV-expressing human FGF-2 (SeV-hFGF2) or that encoding firefly luciferase (109 plaque-forming units/head) was injected into the thigh and calf muscle. At that time, the femoral vein was implanted in the femoral artery in an end-to-end manner in some groups. FGF-2 gene-transferred limbs demonstrated significantly increased blood flow assessed not only by laser Doppler flow image but also by ultrasonic transit-time flowmeter (USTF). USTF also showed a significant increase in the blood flow ratio of the deep femoral artery to external iliac artery, indicating that collateral flow was significantly restored in the thigh muscles (P < 0.01). Reduction of neointimal hyperplasia was also observed in the VGs treated by SeV-hFGF2; these grafts demonstrated significant restoration of endothelium-dependent vasorelaxation. These findings thus extend the indications of therapeutic angiogenesis using SeV-hFGF2 to include not only limb salvage but also prevention of late graft failure.  相似文献   
95.
The infB gene encodes translation initiation factor IF2. We have determined the entire sequence of infB from two cold-sensitive Escherichia coli strains IQ489 and IQ490. These two strains have been isolated as suppressor strains for the temperature-sensitive secretion mutation secY24. The mutations causing the suppression phenotype are located within infB. The only variations from the wild-type (wt) infB found in the two mutant strains are a replacement of Asp409 with Glu in strain IQ489 and an insertion of Gly between Ala421 and Gly422 in strain IQ490. Both positions are located in the GTP-binding G-domain of IF2. A model of the G-domain of E.coli IF2 is presented in. Physiological quantities of the recombinant mutant proteins were expressed in vivo in E.coli strains from which the chromosomal infB gene has been inactivated. At 42 degrees C, the mutants sustained normal cell growth, whereas a significant decrease in growth rate was found at 25 degrees C for both mutants as compared to wt IF2 expressed in the control strain. Circular dichroism spectra were recorded of the wt and the two mutant proteins to investigate the structural properties of the proteins. The spectra are characteristic of alpha-helix dominated structure, and reveal a significant different behavior between the wt and mutant IF2s with respect to temperature-induced conformational changes. The temperature-induced conformational change of the wt IF2 is a two-state process. In a ribosome-dependent GTPase assay in vitro the two mutants showed practically no activity at temperatures below 10 degrees C and a reduced activity at all temperatures up to 45 degrees C, as compared to wt IF2. The results indicate that the amino acid residues, Asp409 and Gly422, are located in important regions of the IF2 G-domain and demonstrate the importance of GTP hydrolysis in translation initiation for optimal cell growth.  相似文献   
96.
Coordination between the nucleotide-binding site and the converter domain of myosin is essential for its ATP-dependent motor activities. To unveil the communication pathway between these two sites, we investigated contact between side chains of Phe-482 in the relay helix and Gly-680 in the SH1-SH2 helix. F482A myosin, in which Phe-482 was changed to alanine with a smaller side chain, was not functional in vivo. In vitro, F482A myosin did not move actin filaments and the Mg2+-ATPase activity of F482A myosin was hardly activated by actin. Phosphate burst and tryptophan fluorescence analyses, as well as fluorescence resonance energy transfer measurements to estimate the movements of the lever arm domain, indicated that the transition from the open state to the closed state, which precedes ATP hydrolysis, is very slow. In contrast, F482A/G680F doubly mutated myosin was functional in vivo and in vitro. The fact that a larger side chain at the 680th position suppresses the defects of F482A myosin suggests that the defects are caused by insufficient contact between side chains of Ala-482 and Gly-680. Thus, the contact between these two side chains appears to play an important role in the coordinated conformational changes and subsequent ATP hydrolysis.  相似文献   
97.
Suzuki Y  Tani T  Sutoh K  Kamimura S 《FEBS letters》2002,512(1-3):235-239
We have devised a novel method to visualize the fluorescence spectrum of a single fluorescent molecule using prism-based spectroscopy. Equipping a total internal reflection microscope with a newly designed wedge prism, we obtained a spectral image of a single rhodamine red molecule attached to an essential light chain of myosin. We also obtained a spectral image of single-pair fluorescence resonance energy transfer between rhodamine red and Cy5 in a double-labeled myosin motor domain. This method could become a useful tool to investigate the dynamic processes of biomolecules at the single-molecule level.  相似文献   
98.
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p.  相似文献   
99.
The crystal structure of the 20S proteasome from bovine liver was determined by the molecular replacement method using the structure of the 20S proteasome from the yeast Sacccharomyces cerevisiae. The initial phases were refined by density modification coupled with non-crystallographic symmetry averaging. The structural model was refined with the program CNS. The final R-factor and R(free) were 0.25 and 0.29, respectively. The constitutive proteasome without any contamination by the immunoproteasome was identified in the crystal structure.  相似文献   
100.
The interaction of the alphaLbeta2 integrin with its cellular ligand the intercellular adhesion molecule-1 (ICAM-1) is critical for the tight binding interaction between most leukocytes and the vascular endothelium before transendothelial migration to the sites of inflammation. In this article we have modeled the alphaL subunit I-domain in its active form, which was computationally docked with the D1 domain of the ICAM-1 to probe potential protein-protein interactions. The experimentally observed key interaction between the carboxylate of Glu 34 in the ICAM-1 D1 domain and the metal ion-dependent adhesion site (MIDAS) in the open alphaL I-domain was consistently reproduced by our calculations. The calculations reveal the nature of the alphaLbeta2/ICAM-1 interaction and suggest an explanation for the increased ligand-binding affinity in the "open" versus the "closed" conformation of the alphaL I-domain. A mechanism for substrate selectivity among alphaL, alphaM, and alpha2 I-domains is suggested whereby the orientation of the loops within the I-domain is critical in mediating the interaction of the Glu 34 carboxylate of ICAM-1 D1 with the MIDAS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号