首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   20篇
  549篇
  2021年   3篇
  2019年   5篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   10篇
  2012年   12篇
  2011年   17篇
  2010年   15篇
  2009年   10篇
  2008年   36篇
  2007年   41篇
  2006年   25篇
  2005年   25篇
  2004年   16篇
  2003年   22篇
  2002年   27篇
  2001年   13篇
  2000年   14篇
  1999年   9篇
  1998年   12篇
  1997年   17篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   16篇
  1990年   15篇
  1989年   5篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1984年   11篇
  1983年   5篇
  1982年   4篇
  1979年   8篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   9篇
  1974年   5篇
  1973年   6篇
  1971年   6篇
  1970年   3篇
  1969年   4篇
  1968年   7篇
  1967年   5篇
  1966年   5篇
排序方式: 共有549条查询结果,搜索用时 0 毫秒
71.
Macrophages have a wide variety of activities and it is largely unknown how the diverse phenotypes of macrophages contribute to pathological conditions in the different types of tissue injury in vivo. In this study we established a novel animal model of acute respiratory distress syndrome caused by the dysfunction of alveolar epithelial type II (AE2) cells and examined the roles of alveolar macrophages in the acute lung injury. The human diphtheria toxin (DT) receptor (DTR), heparin-binding epidermal growth factor-like growth factor (HB-EGF), was expressed under the control of the lysozyme M (LysM) gene promoter in the mice. When DT was administrated to the mice they suffered from acute lung injury and died within 4 days. Immunohistochemical examination revealed that AE2 cells as well as alveolar macrophages were deleted via apoptosis in the mice treated with DT. Consistent with the deletion of AE2 cells, the amount of surfactant proteins in bronchoalveolar lavage fluid was greatly reduced in the DT-treated transgenic mice. When bone marrow from wild-type mice was transplanted into irradiated LysM-DTR mice, the alveolar macrophages became resistant to DT but the mice still suffered from acute lung injury by DT administration. Compared with the mice in which both AE2 cells and macrophages were deleted by DT administration, the DT-treated LysM-DTR mice with DT-resistant macrophages showed less severe lung injury with a reduced amount of hepatocyte growth factor in bronchoalveolar lavage fluid. These results indicate that macrophages play a protective role in noninflammatory lung injury caused by the selective ablation of AE2 cells.  相似文献   
72.
X-ray diffraction patterns from live vertebrate striated muscles were analyzed to elucidate the detailed structural models of the myosin crown arrangement and the axial disposition of two-headed myosin crossbridges along the thick filaments in the relaxed and contracting states. The modeling studies were based upon the previous notion that individual myosin filaments had a mixed structure with two regions, a "regular" and a "perturbed". In the relaxed state the distributions and sizes of the regular and perturbed regions on myosin filaments, each having its own axial periodicity for the arrangement of crossbridge crowns within the basic period, were similar to those reported previously. A new finding was that in the contracting state, this mixed structure was maintained but the length of each region, the periodicities of the crowns and the axial disposition of two heads of a crossbridge were altered. The perturbed regions of the crossbridge repeat shifted towards the Z-bands in the sarcomere without changing the lengths found in the relaxed state, but in which the intervals between three successive crowns within the basic period became closer to the regular 14.5-nm repeat in the contracting state. In high resolution modeling for a myosin head, the two heads of a crossbridge were axially tilted in opposite directions along the three-fold helical tracks of myosin filaments and their axial orientations were different from each other in perturbed and regular regions in both states. Under relaxing conditions, one head of a double-headed crossbridge pair appeared to be in close proximity to another head in a pair at the adjacent crown level in the axial direction in the regular region. In the perturbed region this contact between heads occurred only on the narrower inter-crown levels. During contraction, one head of a crossbridge oriented more perpendicular to the fiber axis and the partner head flared axially. Several factors that significantly influence the intensities of the myosin based-meridional reflections and their relative contributions are discussed.  相似文献   
73.
The platinum-based drug cisplatin is a widely used anticancer drug which acts by causing the induction of apoptosis. However, resistance to the drug is a major problem. In this study we show that the KCP-4 human epidermoid cancer cell line, which serves as a model of acquired resistance to cisplatin, has virtually no volume-sensitive, outwardly rectifying (VSOR) chloride channel activity. The VSOR chloride channel's molecular identity has not yet been determined, and semi-quantitative RT-PCR experiments in this study suggested that the channel corresponds to none of three candidate genes. However, because it is known that the channel current plays an essential role in apoptosis, we hypothesized that lack of the current contributes to cisplatin resistance in these cells and that its restoration would reduce resistance. To test this hypothesis, we attempted to restore VSOR chloride current in KCP-4 cells. It was found that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, caused VSOR chloride channel function to be partially restored. Treatment of the cells with both TSA and cisplatin resulted in an increase in caspase-3 activity at 24 h and a decrease in cell viability at 48 h. These effects were blocked by simultaneous treatment of the cells with a VSOR chloride channel blocker. These results indicate that restoration of the channel's functional expression by TSA treatment leads to a decrease in the cisplatin resistance of KCP-4 cells. We thus conclude that impaired activity of the VSOR chloride channel is involved in the cisplatin resistance of KCP-4 cancer cells.  相似文献   
74.
Stretch- and swelling-activated cation (SSAC) channels play essential roles not only in sensing and transducing external mechanical stresses but also in regulating cell volume in living cells. However, the molecular nature of the SSAC channel has not been clarified. In human epithelial HeLa cells, single-channel recordings in cell-attached and inside-out patches revealed expression of a Mg2+- and Gd3+-sensitive nonselective cation channel that is exquisitely sensitive to membrane stretch. Whole cell recordings revealed that the macroscopic cationic currents exhibit transient receptor potential (TRP) melastatin (TRPM)7-like properties such as outward rectification and sensitivity to Mg2+ and Gd3+. The whole cell cation current was augmented by osmotic cell swelling. RT-PCR and Western blotting demonstrated molecular expression of TRPM7 in HeLa cells. Treatment with small interfering RNA (siRNA) targeted against TRPM7 led to abolition of single stretch-activated cation channel currents and of swelling-activated, whole cell cation currents in HeLa cells. The silencing of TRPM7 by siRNA reduced the rate of cell volume recovery after osmotic swelling. A similar inhibition of regulatory volume decrease was also observed when extracellular Ca2+ was removed or Gd3+ was applied. It is thus concluded that TRPM7 represents the SSAC channel endogenously expressed in HeLa cells and that, by serving as a swelling-induced Ca2+ influx pathway, it plays an important role in cell volume regulation. regulatory volume decrease  相似文献   
75.
Proteomic analyses have revealed a novel synaptic proline-rich membrane protein: PRR7 (proline rich 7), in the postsynaptic density (PSD) fraction of rat forebrain. PRR7 is 269 amino acid residues long, and displays a unique architecture, composed of a very short N-terminal extracellular region, a single membrane spanning domain, and a cytoplasmic domain possessing a proline-rich sequence and a C-terminal type-1 PDZ binding motif. A fraction of PRR7 accumulates in spines along with synapse maturation, and colocalizes with PSD-95 in a punctate pattern in rat hippocampal neural cultures. Immunoprecipitation and GST pull-down assays demonstrated that PRR7 binds to the third PDZ domain of PSD-95. In addition, the NMDA receptor subunits, NR1 and NR2B, specifically co-immunoprecipitated with PRR7. These results suggest that PRR7 is involved in modulating neural activities via interactions with the NMDA receptor and PSD-95, and PSD core formation.  相似文献   
76.
Apoptosis of rat cardiomyocytes induced by staurosporine is prevented by a stilbene derivative (DIDS), which is a known blocker of both Cl(-)/HCO(3)(-) exchangers and Cl(-) channels. To clarify its target, staurosporine-induced activation of caspase-3, DNA laddering and cell death were examined in cultured rat cardiomyocytes. Removal of ambient HCO(3)(-), which minimizes the function of Cl(-)/HCO(3)(-) exchangers, failed to affect the preventive effect of DIDS on apoptosis. A carboxylate analog Cl(-) channel blocker, which does not block Cl(-)/HCO(3)(-) exchangers, also inhibited apoptotic events. Thus, rescue by DIDS of cardiomyocytes from apoptosis is mediated by blockage of Cl(-) channels.  相似文献   
77.
ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 muM. The OGD-induced ATP release was inhibited by Gd(3+) and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl(-) channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X(7) receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd(3+) and arachidonic acid. The channel was found to be permeable to ATP(4-) with a permeability ratio of P(ATP)/P(Cl) = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions.  相似文献   
78.
Bcl11b is a haploinsufficient tumor suppressor gene and expressed in many tissues such as thymus, brain and skin. Irradiated Bcl11b+/− heterozygous mice mostly develop thymic lymphomas, but the preference of Bcl11b inactivation for thymic lymphomas remains to be addressed. We produced Bcl11b+/− heterozygous and Bcl11b wild-type mice of p53+/− background and compared their incidence of γ-ray induced thymic lymphomas. Majority of the tumors in p53+/− mice were skin tumors, and only 5 (36%) of the 14 tumors were thymic lymphomas. In contrast, Bcl11b+/−p53+/− doubly heterozygous mice developed thymic lymphomas at the frequency of 27 (79%) of the 34 tumors developed (P = 0.008). This indicates the preference of Bcl11b impairment for thymic lymphoma development. We also analyzed loss of the wild-type alleles in the 27 lymphomas, a predicted consequence given by γ-irradiation. However, the loss frequency was low, only six (22%) for Bcl11b and five (19%) for p53. The frequencies did not differ from those of spontaneously developed thymic lymphomas in the doubly heterozygous mice, though the latency of lymphoma development markedly differed between them. This suggests that the main contribution of irradiation at least in those mice is not for the tumor initiation by inducing allelic losses but probably for the promotion of thymic lymphoma development.  相似文献   
79.
80.
To investigate the immunomodulating effects of IL-15 in vivo on mycobacterial infection, we used IL-15-transgenic (Tg) mice, which were recently constructed with cDNA-encoding secretable isoform of IL-15 precursor protein under the control of a MHC class I promoter. The IL-15-Tg mice exhibited resistance against infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG), as assessed by bacteria growth. IFN-gamma level in serum was significantly higher in IL-15-Tg mice than in non-Tg mice after BCG infection. NK cells were remarkably increased, and Ag-specific T cytotoxic 1 response mediated by CD8+ T cells producing IFN-gamma was significantly augmented in the IL-15-Tg mice following BCG infection. Neutralization of endogenous IFN-gamma by in vivo administration of anti-IFN-gamma mAb deteriorated the clearance of the bacteria. Depletion of of NK cells or CD8+ T cells by in vivo administration of anti-asialo-GM(1) Ab or anti-CD8 mAb hampered the exclusion of bacteria. Thus, overexpression of IL-15 in vivo enhanced protection against BCG infection via augmentation of NK and T cytotoxic 1 responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号