首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   76篇
  2021年   14篇
  2020年   6篇
  2019年   13篇
  2018年   21篇
  2017年   15篇
  2016年   18篇
  2015年   27篇
  2014年   32篇
  2013年   62篇
  2012年   62篇
  2011年   55篇
  2010年   39篇
  2009年   33篇
  2008年   66篇
  2007年   68篇
  2006年   63篇
  2005年   68篇
  2004年   58篇
  2003年   62篇
  2002年   68篇
  2001年   25篇
  2000年   36篇
  1999年   24篇
  1998年   12篇
  1997年   16篇
  1996年   12篇
  1995年   9篇
  1994年   14篇
  1993年   7篇
  1992年   19篇
  1991年   22篇
  1990年   9篇
  1989年   7篇
  1988年   13篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1975年   4篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
111.

Background and aims

The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour.

Methods

Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence.

Results

We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids.

Conclusions

The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.  相似文献   
112.
Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway.  相似文献   
113.
The genes encoding monomer- and dimer-type isocitrate dehydrogenase (IDH) isozymes from a psychrotrophic bacterium, Pseudomonas psychrophila, were cloned and sequenced. Open reading frames of the genes were 2,226 and 1,257 bp in length and corresponded to polypeptides composed of 741 and 418 amino acids, respectively. The deduced amino acid sequences showed high sequence identity with those of psychrophilic bacteria, Colwellia maris and Colwellia psychrerythraea, (about 70% identity) and the respective types of the putative IDH genes from other bacteria of genus Pseudomonas (more than 80% identity). The two genes were located in opposite direction from each other with a spacer of 463 bases in the order of dimeric and monomeric IDH genes on the chromosomal DNA, but analyses of northern blotting and 5′-terminal regions of the mRNAs revealed that they are transcribed independently. The expression of monomer- and dimer-type IDH genes in C. maris are known to be cold- and acetate-inducible, respectively, while only slight inductions by low temperature and/or acetate were observed in the expression of the P. psychrophila monomer- and dimer-type IDH genes. Both of these IDH isozymes overproduced in Escherichia coli showed mesophilic properties, in contrast with monomer- and dimer-type IDHs of C. maris as cold adapted and mesophilic enzymes, respectively. The substitution of Glu55 residue in the P. psychrophila monomeric IDH for Lys, which is the corresponding residue conserved between the cold-adapted monomeric IDHs from C. maris and C. psychrerythraea, by site-directed mutagenesis resulted in the decreased thermostability and the lowered optimum temperature of activity, suggesting that this residue is involved in the mesophilic properties of the P. psychrophila monomeric IDH.  相似文献   
114.
Cytochrome P450BSβ, a H2O2-dependent cytochrome P450 catalyzing the hydroxylation of long-alkyl-chain fatty acids, lacks the general acid–base residue around the heme, which is indispensable for the efficient generation of the active species using H2O2. On the basis of the crystal structure of the palmitic acid bound form of cytochrome P450BSβ, it was suggested that the role of the general acid–base function was provided by the carboxylate group of fatty acids. The participation of the carboxylate group of the substrate was supported by the fact that cytochrome P450BSβ can catalyze oxidations of nonnatural substrates such as styrene and ethylbenzene in the presence of a series of short-alkyl-chain carboxylic acids as a dummy molecule of fatty acid. We refer to a series of short-alkyl-chain carboxylic acids as a “decoy molecule”. As shown here, we have clarified the crystal structure of the decoy-molecule-bound form and elucidated that the location of its carboxylate group is virtually the same as that of palmitic acid in the heme cavity, indicating that the carboxylate group of the decoy molecule serves as the general acid–base catalyst. This result further confirms that the role of the acid–base function is satisfied by the carboxylate group of the substrates. In addition, the structure analysis of the substrate-free form has clarified that no remarkable structural change is induced by the binding of the decoy molecule as well as fatty acid. Consequently, whether the carboxylate group is positioned in the active site provides the switching mechanism of the catalytic cycle of cytochrome P450BSβ.  相似文献   
115.
Human ribonuclease L (RNase L), an interferon-induced endoribonuclease, becomes enzymatically active after binding to 2-5A. The 5′-phosphoryl group of 2-5A is reportedly necessary for the conformational change leading to RNase L activation. However, we found that 5′-O-dephosphorylated 2-5A tetramer analogs with 8-methyladenosine at the 2′-terminus were more effective as an activator of RNase L than the parent 2-5A tetramer. Introduction of 8-methyladenosine is thought to induce a dramatic shift of 2-5A in the binding site of RNase L.  相似文献   
116.
117.
We investigated the diversity and phylogeography of mitochondrial DNA (mtDNA) in Japanese macaques (Macaca fuscata), an endemic species in Japan that has the northernmost distribution of any non-human primate species. DNA samples from 135 localities representing the entire range of this species were compared. A total of 53 unique haplotypes were observed for the 412-bp partial mtDNA control region sequence, with length variation distinguishing the two subspecies. Clustering analyses suggested two putative major haplogroups, of which one was geographically distributed in eastern Japan and the other in western Japan. The populations in the east showed lower mtDNA diversity than those in the west. Phylogeographical relationships of haplotypes depicted with minimum spanning network suggested differences in population structure. Population expansion was significant for the eastern but not the western population, suggesting establishment of the ancestral population was relatively long ago in the west and recent in the east. Based on fossil evidence and past climate and vegetation changes, we inferred that the postulated population expansion may have taken place after the last glacial period (after 15,000 years ago). Mitochondrial DNA showed contrasting results in both variability and phylogenetic status of local populations to those of previous studies using protein variations, particularly for populations in the periphery of the range, with special inference on habitat change during the glacial period in response to cold adaptation. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
118.
New ditopic sensory elements 2 and 3 for catecholamines based on a hexahomotrioxacalix[3]arene, with a boronic acid substituent appended, were designed and synthesized. As an interesting mode of molecular recognition at membrane surfaces, the host, when incorporated into poly(vinyl chloride) (PVC) liquid membranes, displayed excellent potentiometric selectivity for dopamine over other catecholamines (noradrenaline and adrenaline) and inorganic cations (Na+, K+, and NH4+).  相似文献   
119.
Visible light decomposition of aqueous NH3 to N2 was investigated using a photocatalyst aqueous solution based on molecular photoelectron relay systems of either sensitizer (tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3(2+))/potassium peroxodisulfate(K(2)S(2)O(8)) or Ru(bpy)3(2+)/methylviologen dichloride(MV2+)/O2, capable of using visible light instead of UV-driven semiconductors such as TiO2. It was confirmed by using an in situ visible absorption spectral change under irradiation that the Ru(II) complex is oxidized to the Ru(III) complex by K(2)S(2)O(8), and that the Ru(III) complex formed is stable without NH3, while the added NH3 was oxidized by the Ru(III) complex to produce the Ru(II) complex. In the presence of 1 mM NH3 aqueous solution, the Ru(III) complex was the predominant species under the photostationary state, but in the presence of 100 mM NH3, Ru(II) predominated. Gas-chromatographic analysis of the gaseous phase in the presence of 8.1 M NH3 showed that the photochemical oxidation of ammonia yielded N2. It was also demonstrated by using the in situ visible absorption spectrum under irradiation of the NH3 (1 M)/Ru(bpy)3(2+) (0.1 mM)/MV2+ (10 mM) system under Ar that MV+* is accumulated, showing that NH3 works as an electron donor for MV+* accumulation with simultaneous formation of the oxidized product of ammonia ((NH3)ox) without producing N2. It was suggested that the reduced product (MV+*) and the oxidized product ((NH3)ox) are in a kind of dynamic equilibrium prohibiting further oxidation of (NH3)ox by Ru(bpy)3(3+) to N2. In the O2 atmosphere, the oxidation of MV+* to MV2+ takes place to accumulate Ru(III) complex, so that (NH3)ox was further oxidized to N2. The high activity of IrO2 as a cocatalyst in this system was demonstrated.  相似文献   
120.
Gluconacetobacter xylinus (formerly Acetobacter xylinum and presently Komagataeibacter medellinensis) is known to produce cellulose as a stable pellicle. However, it is also well known to lose this ability very easily. We investigated the on and off mechanisms of cellulose producibility in two independent cellulose-producing strains, R1 and R2. Both these strains were isolated through a repetitive static culture of a non-cellulose-producing K. medellinensis NBRC 3288 parental strain. Two cellulose synthase operons, types I and II, of this strain are truncated by the frameshift mutation in the bcsBI gene and transposon insertion in the bcsCII gene, respectively. The draft genome sequencing of R1 and R2 strains revealed that in both strains the bcsBI gene was restored by deletion of a nucleotide in its C-rich region. This result suggests that the mutations in the bcsBI gene are responsible for the on and off mechanism of cellulose producibility. When we looked at the genomic DNA sequences of other Komagataeibacter species, several non-cellulose-producing strains were found to contain similar defects in the type I and/or type II cellulose synthase operons. Furthermore, the phylogenetic relationship among cellulose synthase genes conserved in other bacterial species was analyzed. We observed that the cellulose genes in the Komagataeibacter shared sequence similarities with the γ-proteobacterial species but not with the α-proteobacteria and that the type I and type II operons could be diverged from a same ancestor in Komagataeibacter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号