首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   24篇
  2021年   6篇
  2020年   2篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   17篇
  2013年   25篇
  2012年   41篇
  2011年   33篇
  2010年   29篇
  2009年   17篇
  2008年   40篇
  2007年   34篇
  2006年   39篇
  2005年   31篇
  2004年   39篇
  2003年   39篇
  2002年   37篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   4篇
  1965年   1篇
排序方式: 共有572条查询结果,搜索用时 46 毫秒
541.
Aromatic C–H bond hydroxylation of 1-methoxynaphthalene was efficiently catalyzed by the substrate misrecognition system of the hydrogen peroxide dependent cytochrome P450BSβ (CYP152A1), which usually catalyzes hydroxylation of long-alkyl-chain fatty acids. Very importantly, the hydroxylation of 1-methoxynaphthalene can be monitored by a color change since the formation of 4-methoxy-1-naphthol was immediately followed by its further oxidation to yield Russig’s blue. Russig’s blue formation allows us to estimate the peroxygenation activity of enzymes without the use of high performance liquid chromatography, gas chromatography, and nuclear magnetic resonance measurements.  相似文献   
542.
The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A(C2) and A(C3), are described. The ON containing A(C2) involves the 3'-->4' and 3-->5' phosphodiester linkages in the strand, whereas that containing A(C3) possesses the 3'-->4' and 2'-->5' phosphodiester linkages. It was found that incorporation of the analogs, A(C2) or A(C3), into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A(C2) is greater than that of A(C3) in the ON/RNA duplexes.  相似文献   
543.
Nicotine is a major alkaloid accumulating in the vacuole of tobacco (Nicotiana tabacum), but the transporters involved in the vacuolar sequestration are not known. We here report that tobacco genes (NtMATE1 and NtMATE2) encoding transporters of the multidrug and toxic compound extrusion (MATE) family are coordinately regulated with structural genes for nicotine biosynthesis in the root, with respect to spatial expression patterns, regulation by NIC regulatory loci, and induction by methyl jasmonate. Subcellular fractionation, immunogold electron microscopy, and expression of a green fluorescent protein fusion protein all suggested that these transporters are localized to the vacuolar membrane. Reduced expression of the transporters rendered tobacco plants more sensitive to the application of nicotine. In contrast, overexpression of NtMATE1 in cultured tobacco cells induced strong acidification of the cytoplasm after jasmonate elicitation or after the addition of nicotine under nonelicited conditions. Expression of NtMATE1 in yeast (Saccharomyces cerevisiae) cells compromised the accumulation of exogenously supplied nicotine into the yeast cells. The results imply that these MATE-type proteins transport tobacco alkaloids from the cytosol into the vacuole in exchange for protons in alkaloid-synthesizing root cells.Alkaloids are a chemically diverse group of low-molecular weight, nitrogen-containing secondary metabolites with characteristic toxicity and pharmacological activity and may function in the chemical defense of plants against herbivores and pathogens (Facchini, 2001; Steppuhn et al., 2004). Natural hydrophilic products, including alkaloids, are usually stored in the vacuole, which appears to be especially adapted to the bulk storage of chemicals for defensive functions. Due to its nitrogen atom(s), an alkaloid can be protonated and is a base. Because several weakly basic alkaloids, such as nicotine, are present in the lipophilic non-charged form in slightly alkaline solutions, a portion of these alkaloids in the cytoplasm may pass through the tonoplast by simple diffusion. An ion-trap mechanism has been proposed to drive an apparent uphill transport of weakly basic alkaloids against a concentration gradient, in which alkaloids are protonated in the acidic vacuole to become membrane-impermeable hydrophilic molecules (Wink and Roberts, 1998). This trapping mechanism removes transport-competent “free” molecules and thus enables the uphill transport process. As attractive as this model is, it is not known whether and how much the actual vacuolar transport of weakly basic alkaloids depends on the trapping mechanism. In contrast, other alkaloids, which are charged under cytosolic pH conditions, are thought to pass through the tonoplast via a carrier-mediated mechanism (Deus-Newmann and Zenk, 1986; Otani et al., 2005).Nicotine is a major alkaloid synthesized in most commercial varieties of tobacco (Nicotiana tabacum). In tobacco, nicotine is synthesized exclusively in the root and distributed throughout the plant via the xylem, concentrating in the young tissues of aerial parts (Hashimoto and Yamada, 1995; Baldwin, 2001). As much as 60 mm of nicotine accumulates in the vacuoles of the leaf epidermal cells at the tip (Lochmann et al., 2001). Putrescine N-methyltransferase (PMT) catalyzes the first committed step in the nicotine-specific pathway, and a PIP-family reductase, called A622, was also suggested to function in a late step in nicotine biosynthesis (Hibi et al., 1994; Shoji et al., 2000a, 2000b; DeBoer et al., 2009; Kajikawa et al., 2009). PMT and A622 proteins are specifically expressed in the same cell types in the root (Shoji et al., 2000a, 2002). Both enzymes were abundant in the endodermis and cortex cells of the root tips, whereas in the differentiated region of the root, the outermost layer of the cortex and parenchyma cells surrounding the xylem in the vascular bundle contained these proteins. These localization patterns not only substantiated root-specific nicotine biosynthesis but also suggested nicotine synthesis to be intimately associated with the xylem-based transport.Nicotine biosynthesis is positively regulated by the jasmonate-signaling cascade involving the COI1 F-box protein and JAZ repressors (Paschold et al., 2007; Shoji et al., 2008) and by the NIC regulatory loci that specifically control the gene expression of all enzymes known to be involved in the biosynthesis (Legg, 1984; Hibi et al., 1994; Reed and, Jelesko, 2004; Cane et al., 2005; Heim et al., 2007; Katoh et al., 2007). In flavonoid biosynthesis, regulatory genes coordinately regulate not only enzyme genes but also transporter genes responsible for intracellular transport of the metabolites (Koes et al., 2005). In this study, we identified two related tobacco transporters that are coordinately regulated by the NIC loci with nicotine biosynthetic enzymes. Our results suggest that these transporters promote the uptake of nicotine and related alkaloids into the vacuole by using a H+-gradient across the tonoplast in the alkaloid-synthesizing root cells.  相似文献   
544.
Type I collagen is a major component of the extracellular matrix, and mutations in the collagen gene cause several matrix-associated diseases. These mutant procollagens are misfolded and often aggregated in the endoplasmic reticulum (ER). Although the misfolded procollagens are potentially toxic to the cell, little is known about how they are eliminated from the ER. Here, we show that procollagen that can initially trimerize but then aggregates in the ER are eliminated by an autophagy-lysosome pathway, but not by the ER-associated degradation (ERAD) pathway. Inhibition of autophagy by specific inhibitors or RNAi-mediated knockdown of an autophagy-related gene significantly stimulated accumulation of aggregated procollagen trimers in the ER, and activation of autophagy with rapamycin resulted in reduced amount of aggregates. In contrast, a mutant procollagen which has a compromised ability to form trimers was degraded by ERAD. Moreover, we found that autophagy plays an essential role in protecting cells against the toxicity of the ERAD-inefficient procollagen aggregates. The autophagic elimination of aggregated procollagen occurs independently of the ERAD system. These results indicate that autophagy is a final cell protection strategy deployed against ER-accumulated cytotoxic aggregates that are not able to be removed by ERAD.  相似文献   
545.
The overall goal of this study is to develop an anther culture system to produce doubled haploid (DH) lines of gentian (Gentiana triflora), an ornamental flowering plant, for use in an F1 hybrid breeding program. Embryogenesis was induced from anther cultures incubated on half-strength modified Lichter (NLN) medium containing a high concentration of sucrose (130 g/l) and subjected to heat shock treatment. Among the various parameters investigated, anthers collected from buds 9–12 mm in length induced the highest frequency of androgenesis. Moreover, among three genotypes tested, cvs. Ashiro-no-Aki and Ashiro-no-Natsu produced 21.3 and 3.7 embryos per 100 anthers, respectively, whereas, cv. Lovely-Ashiro failed to produce embryos. Among a total of 427 embryos transferred to a regeneration medium consisting of Murashige and Skoog (MS) medium, 138 plants were regenerated. The ploidy levels of regenerants were determined by flow cytometry and chromosome counts, revealing the presence of 5% haploids, 25% diploids, and 70% triploids. Inter simple sequence repeat (ISSR) analysis using the 6PS line obtained following self-pollination of the diploid plant obtained from anther culture confirmed that the diploid plant was indeed a DH.  相似文献   
546.
Peripheral myelin protein22 (PMP22), a membrane glycoprotein, plays a significant role in the formation and/or maintenance of compact myelin in the peripheral nervous system. We studied two pedigrees with Dejerine-Sottas disease and identified two novel mutations in the PMP22 gene: one a 2-bp deletional mutation at nucleotide positions426 and 427 of exon4 (this is predicted to alter the reading frame at leucine80 and thus to lead to frame-shifted translation), and the other a guanine to thymine substitution at nucleotide position636 leading to a cysteine substitution for glycine150. Both mutations were located in the putative transmembrane domains reported in many cases of Charcot-Marie-Tooth neuropathy, Dejerine-Sottas disease, and hereditary neuropathy with liability to pressure palsies. The results suggest an important role for the putative transmembrane domains of PMP22 in its function. Received: 1 September 1997 / Accepted: 4 November 1997  相似文献   
547.
Gibberellin A1, (GA1), GA19, and GA20 in phloem exudates andcotyledons of seedlings of Pharbitis nil cv. Violet, grown underdifferent photoperiodic conditions, were qualitatively and semi-quantitativelyanalyzed by a combination of high performance-liquid chromatography(HPLC) and radioimmunoassays (RIA). The levels of GA19 and GA20were higher in cotyledons from plants grown under dark treatment(DT) conditons of 16 h-light/8 h-dark for 6 days followed by8 h-light/16 h-dark for 3 days than in those grown under continuouslight (CL) for 9 days. This relationship was also observed forthe GAs in phloem exudates, although the levels were much lowerthan in the cotyledons. When GAs were applied to the cotyledons,elongation of the epicotyl was promoted more by GA20 than byGA1 or GA19, especially under the CL treatment. The relativeeffect of GA1 and GA20 on the epicotyl elongation was reversedwhen these GAs were applied to epicotyls pre-treated with prohexadione,an inhibitor of 2-oxoglutarate-dependent dioxygenases. 3Present address: Frontier Research Program, The Institute ofPhysical and Chemical Research (RIKEN), 2-1 Hirosawa, Wakoshi,Saitama, 351-01 Japan 4Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Nagoya, 464-01 Japan  相似文献   
548.
549.
Monoclonal antibody MI315 was produced against hamster tooth germ homogenate by in vitro immunization. It was found that MI315 reacted with enamel matrix, ameloblasts, and bone matrix at an early stage of osteogenesis. Decalcified tissues of rat femurs and mandibles were examined with MI315 using indirect immunofluorescence. In endochondral ossification of femurs, immunoreactivity was found in bone extracellular matrix (ECM) deposited on the surface of the cartilage core of primary spongiosa, but not in the cartilage core itself. In intramembranous ossification of 0-day-old rat mandibles, intense immunofluorescence was detected in bone ECM and a few young osteocytes, but not in osteoblasts. Immunoreactivity in bone ECM of 2-day-old rats decreased and almost disappeared from bone ECM of 4-day-old rats. Although in nondecalcified sections of 0-day-old rats, negligible immunofluorescence was detected in bone ECM which showed positive staining in decalcified tissues, the immunostaining appeared after decalcification using ethylenediaminetetraacetic acid (EDTA). These results indicate that a substance(s), which had a common epitope with an enamel-derived protein(s), existed in immature bone ECM of both endochondral and intramembranous ossification, and that it might be masked by bone mineral. Monoclonal antibody MI315 is a useful tool to investigate the time- and position-specific changes in osteogenesis and amelogenesis.  相似文献   
550.
Glutathione reductase (GR) recycles oxidized glutathione (GSSG) by converting it to the reduced form (GSH) using an NADPH as the electron source. The function of GR in the male genital tract of the rat was examined by measuring its enzymatic activity and examining the gene expression and localization of the protein. Levels of GR activity, the protein, and the corresponding mRNA were the highest in epididymis among testes, vas deferens, seminal vesicle, and prostate gland. The localization of GR, as evidenced by immunohistochemical techniques, reveals that it exists at high levels in the epithelia of the genital tract. In testis, GR is mainly localized in Sertoli cells. The enzymatic activity and protein expression of GR in primary cultured testicular cells confirmed its predominant expression in Sertoli cells. Intracellular GSH levels, expressed as mol per mg protein, was higher in spermatogenic cells than in Sertoli cells. As a result of these findings, the effects of buthionine sulfoximine (BSO), an inhibitor for GSH synthesis, and 1,3-bis(2-chlorethyl)-1-nitrosourea (BCNU), an inhibitor for GR, on cultured testicular cells were examined. Sertoli cells were prone to die as the result of BCNU, but not BSO treatment, although intracellular levels of GSH declined more severely with BSO treatment. Spermatogenic cells were less sensitive to these agents than Sertoli cells, which indicates that the contribution of these enzymes is less significant in spermatogenic cells. The results herein suggest that the GR system in Sertoli cells is involved in the supplementation of GSH to spermatogenic cells in which high levels of cysteine are required for protamine synthesis. In turn, the genital tract, the epithelia of which are rich in GR, functions in an antioxidative manner to protect sulfhydryl groups and unsaturated fatty acids in spermatozoa from oxidation during the maturation process and storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号