首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3358篇
  免费   203篇
  国内免费   5篇
  2023年   6篇
  2022年   15篇
  2021年   45篇
  2020年   21篇
  2019年   26篇
  2018年   43篇
  2017年   28篇
  2016年   53篇
  2015年   121篇
  2014年   151篇
  2013年   201篇
  2012年   238篇
  2011年   233篇
  2010年   154篇
  2009年   155篇
  2008年   218篇
  2007年   240篇
  2006年   221篇
  2005年   263篇
  2004年   218篇
  2003年   187篇
  2002年   196篇
  2001年   33篇
  2000年   22篇
  1999年   43篇
  1998年   54篇
  1997年   33篇
  1996年   34篇
  1995年   33篇
  1994年   39篇
  1993年   24篇
  1992年   19篇
  1991年   22篇
  1990年   20篇
  1989年   15篇
  1988年   18篇
  1987年   10篇
  1986年   4篇
  1985年   16篇
  1984年   16篇
  1983年   9篇
  1982年   8篇
  1981年   23篇
  1980年   8篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1961年   2篇
排序方式: 共有3566条查询结果,搜索用时 31 毫秒
111.
Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat‐dependent toxicity may affect nuclear import. hnRNPA3 is a heterogeneous nuclear ribonucleoprotein, which specifically binds to the G4C2 repeat RNA. We now report that a reduction of nuclear hnRNPA3 leads to an increase of the repeat RNA as well as DPR production and deposition in primary neurons and a novel tissue culture model that reproduces features of the C9orf72 pathology. In fibroblasts derived from patients carrying extended C9orf72 repeats, nuclear RNA foci accumulated upon reduction of hnRNPA3. Neurons in the hippocampus of C9orf72 patients are frequently devoid of hnRNPA3. Reduced nuclear hnRNPA3 in the hippocampus of patients with extended C9orf72 repeats correlates with increased DPR deposition. Thus, reduced hnRNPA3 expression in C9orf72 cases leads to increased levels of the repeat RNA as well as enhanced production and deposition of DPR proteins and RNA foci.  相似文献   
112.
Reversible infantile liver failure (RILF) is a unique heritable liver disease characterized by acute liver failure followed by spontaneous recovery at an early stage of life. Genetic mutations in MTU1 have been identified in RILF patients. MTU1 is a mitochondrial enzyme that catalyzes the 2-thiolation of 5-taurinomethyl-2-thiouridine (τm5s2U) found in the anticodon of a subset of mitochondrial tRNAs (mt-tRNAs). Although the genetic basis of RILF is clear, the molecular mechanism that drives the pathogenesis remains elusive. We here generated liver-specific knockout of Mtu1 (Mtu1LKO) mice, which exhibited symptoms of liver injury characterized by hepatic inflammation and elevated levels of plasma lactate and AST. Mechanistically, Mtu1 deficiency resulted in a loss of 2-thiolation in mt-tRNAs, which led to a marked impairment of mitochondrial translation. Consequently, Mtu1LKO mice exhibited severe disruption of mitochondrial membrane integrity and a broad decrease in respiratory complex activities in the hepatocytes. Interestingly, mitochondrial dysfunction induced signaling pathways related to mitochondrial proliferation and the suppression of oxidative stress. The present study demonstrates that Mtu1-dependent 2-thiolation of mt-tRNA is indispensable for mitochondrial translation and that Mtu1 deficiency is a primary cause of RILF. In addition, Mtu1 deficiency is associated with multiple cytoprotective pathways that might prevent catastrophic liver failure and assist in the recovery from liver injury.  相似文献   
113.
G Protein‐Coupled Receptors (GPCRs) are important pharmaceutical targets. More than 30% of currently marketed pharmaceutical medicines target GPCRs. Numerous studies have reported that GPCRs function not only as monomers but also as homo‐ or hetero‐dimers or higher‐order molecular complexes. Many GPCRs exert a wide variety of molecular functions by forming specific combinations of GPCR subtypes. In addition, some GPCRs are reportedly associated with diseases. GPCR oligomerization is now recognized as an important event in various biological phenomena, and many researchers are investigating this subject. We have developed a support vector machine (SVM)‐based method to predict interacting pairs for GPCR oligomerization, by integrating the structure and sequence information of GPCRs. The performance of our method was evaluated by the Receiver Operating Characteristic (ROC) curve. The corresponding area under the curve was 0.938. As far as we know, this is the only prediction method for interacting pairs among GPCRs. Our method could accelerate the analyses of these interactions, and contribute to the elucidation of the global structures of the GPCR networks in membranes. Proteins 2016; 84:1224–1233. © 2016 Wiley Periodicals, Inc.  相似文献   
114.
Extremophiles - The stability of dimeric cytochrome c′ from a thermophile, as compared with that of a homologous mesophilic counterpart, is attributed to strengthened interactions around the...  相似文献   
115.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   
116.
Here we report the enzymatic and ligand-binding properties of a major secretory protein in the choroid plexus of cane toad, Bufo marinus, whose protein is homologous with lipocalin-type prostaglandin (PG) D synthase (L-PGDS) and is recombinantly expressed in Xenopus A6 cells and Escherichia coli. The toad protein bound all-trans retinal, bile pigment, and thyroid hormones with high affinities (K(d)=0.17 to 2.00 microM). The toad protein also catalysed the L-PGDS activity, which was accelerated in the presence of GSH or DTT, similar to the mammalian enzyme. The K(m) value for PGH(2) (17 microM) of the toad protein was almost the same as that of rat L-PGDS (14 microM), whereas the turnover number (6 min(-1)) was approximately 28 fold lower than that of rat L-PGDS. Site-directed mutagenesis based on a modeled structure of the toad protein revealed that Cys(59) and Thr(61) residues were crucial for the PGDS activity. The quadruple Gly(39)Ser/Ala(75)Ser/Ser(140)Thr/Phe(142)Tyr mutant of the toad protein, resembling mouse L-PGDS, showed a 1.6 fold increase in the turnover number and a shift in the optimum pH for the PGDS activity from 9.0 to 8.5. Our results suggest that the toad protein is a prototype of L-PGDS with a highly functional ligand-binding pocket and yet with a primitive catalytic pocket.  相似文献   
117.
The Rac-specific guanine nucleotide exchange factor (GEF) Asef is activated by binding to the tumor suppressor adenomatous polyposis coli mutant, which is found in sporadic and familial colorectal tumors. This activated Asef is involved in the migration of colorectal tumor cells. The GEFs for Rho family GTPases contain the Dbl homology (DH) domain and the pleckstrin homology (PH) domain. When Asef is in the resting state, the GEF activity of the DH-PH module is intramolecularly inhibited by an unidentified mechanism. Asef has a Src homology 3 (SH3) domain in addition to the DH-PH module. In the present study, the three-dimensional structure of Asef was solved in its autoinhibited state. The crystal structure revealed that the SH3 domain binds intramolecularly to the DH domain, thus blocking the Rac-binding site. Furthermore, the RT-loop and the C-terminal region of the SH3 domain interact with the DH domain in a manner completely different from those for the canonical binding to a polyproline-peptide motif. These results demonstrate that the blocking of the Rac-binding site by the SH3 domain is essential for Asef autoinhibition. This may be a common mechanism in other proteins that possess an SH3 domain adjacent to a DH-PH module.  相似文献   
118.
Monocyte chemoattractant protein-1 (MCP-1), an important chemokine whose expression is increased during the course of obesity, plays a role in macrophage infiltration into obese adipose tissue. This study was designed to elucidate the role of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the induction of MCP-1 during the course of adipocyte hypertrophy. We examined the time course of MKP-1 and MCP-1 mRNA expression and extracellular signal-regulated kinase (ERK) phosphorylation in the adipose tissue from mice rendered mildly obese by a short term high fat diet. We also studied the role of MKP-1 in the induction of MCP-1 in 3T3-L1 adipocytes during the course of adipocyte hypertrophy. MCP-1 mRNA expression was increased, followed by ERK activation and down-regulation of MKP-1, an inducible dual specificity phosphatase to inactivate ERK, in the adipose tissue at the early stage of obesity induced by a short term high fat diet, when macrophages are not infiltrated. Down-regulation of MKP-1 preceded ERK activation and increased production of MCP-1 in 3T3-L1 adipocytes in vitro during the course of adipocyte hypertrophy. Adenovirus-mediated restoration of MKP-1 in hypertrophied 3T3-L1 adipocytes reduced the otherwise increased ERK phosphorylation, thereby leading to the significant reduction of MCP-1 mRNA expression. This study provides evidence that the down-regulation of MKP-1 is critical for increased production of MCP-1 during the course of adipocyte hypertrophy.  相似文献   
119.
The purpose of this study was to compare the cardiovascular responses to different types of mental stress. Ten healthy males performed a mental arithmetic task (MA) on one day and were exposed to white noise (WN, 80dB) on another day. Both the MA and the WN were composed of four 5-min consecutive periods with a 3-min rest between them. On each day, the systolic and diastolic blood pressure (SBP and DBP), mean arterial pressure (MAP), cardiac output (CO), and total peripheral resistance (TPR) were measured continually during the entire experimental period. The changes from the baseline (Delta) in all periods were calculated for both mental stresses. As for the results, the DeltaMAP, DeltaCO, DeltaHR, and DeltaTPR in the MA did not significantly change during the task periods. However, in the WN, the DeltaMAP and DeltaTPR showed significant increases over the time of the consecutive periods. In addition, we discuss the response patterns for the two mental stresses. We examine three hemodynamic reactivity patterns: a cardiac pattern characterized by increased CO and decreased TPR, a mixed pattern characterized by a moderate increase in both CO and TPR, and a vascular pattern characterized by increased TPR and decreased CO. The results show that throughout all task/exposure periods, the response pattern remained the same for six subjects in each stress. Furthermore, of these six subjects, half showed the same response pattern in both the MA and the WN. In conclusion, compared to the MA task, consecutive WN exposure showed an accumulation of stress responses. A change in TPR contributed to a gradual increase in MAP in the WN. It is also possible that among the subjects there were different types of response to the MA and WN.  相似文献   
120.
This study was designed to investigate the physiological effects of color in terms of blood pressure and the results of electroencephalogram (EEG) as subjects looked at the sheets of paper of various colors. A questionnaire was also used to assess psychological effects. Three colors (red, green, blue) were shown to each subject in randomized order. The various colors showed distinctly different effects on the mean power of the alpha band, theta band, and on the total power in the theta-beta EEG bandwidth and alpha attenuation coefficient (AAC). Scores of the subjective evaluations concerning heavy, excited, and warm feelings also indicated significant differences between red and blue conditions. Against to our prediction, blue elicited stronger arousal than did red as expressed by the results of AAC and the mean power of the alpha band, which conflicted with the results of the subjective evaluations scores. This phenomenon might be caused by bluish light's biological activating effect. The powers of the alpha band, and the theta band, and the total power of the theta-beta bandwidth as measured by EEG showed larger values while the subjects looked at red paper than while they looked at blue paper. This indicated that red possibly elicited an anxiety state and therefore caused a higher level of brain activity in the areas of perception and attention than did the color blue. Red paper's effect to activate the central cortical region with regard to perception and attention was considerably more distinguishable than was the biological activating effect of bluish light in our study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号