首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3301篇
  免费   194篇
  国内免费   5篇
  2023年   6篇
  2022年   16篇
  2021年   46篇
  2020年   21篇
  2019年   26篇
  2018年   43篇
  2017年   27篇
  2016年   53篇
  2015年   119篇
  2014年   149篇
  2013年   202篇
  2012年   235篇
  2011年   230篇
  2010年   152篇
  2009年   155篇
  2008年   215篇
  2007年   236篇
  2006年   220篇
  2005年   253篇
  2004年   216篇
  2003年   184篇
  2002年   188篇
  2001年   24篇
  2000年   20篇
  1999年   41篇
  1998年   52篇
  1997年   32篇
  1996年   35篇
  1995年   33篇
  1994年   39篇
  1993年   24篇
  1992年   17篇
  1991年   21篇
  1990年   19篇
  1989年   16篇
  1988年   19篇
  1987年   10篇
  1986年   4篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   7篇
  1981年   22篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1961年   2篇
排序方式: 共有3500条查询结果,搜索用时 31 毫秒
271.
The unicellular green alga Chlamydomonas reinhardtii can acclimate to a broad range of environmental CO(2) concentrations. We observed that the cells synthesized a specific 43 kDa protein, H43, in the periplasmic space under photoautotrophic high-CO(2) conditions. Under low-CO(2) conditions, H43 disappeared. However, H43 mRNA expression was observed even under heterotrophic low-CO(2) conditions when the cells were grown with 17.4 mM acetate in darkness. When the cells were treated with 4,4'-dithiocyanatostilbene-2,2'-disulfonate (DIDS) and mersalyl to modify cell surface proteins, H43 mRNA expression was strongly affected under both heterotrophic and photoautotrophic conditions. The H43 induction pattern in a mitochondrial respiration-deficient mutant dum-1 that lacks cytochrome c oxidase was the same, but the level was much lower than that in the wild type. Even under illumination, the dissolved CO(2) concentration in the culture rapidly increased slightly following the addition of acetate and dramatically increased even further by the inhibition of photosynthesis with DCMU. Radiotracer experiments with [U-(14)C]acetate revealed that (14)CO(2) release from cells was greater in darkness than in the light due to the great stimulation of internal CO(2) evolution, resulting in an increase in external CO(2) concentration. Strong light inhibited H43 induction and DCMU promoted the induction under photoheterotrophic low-CO(2) conditions. The results demonstrate that H43 is strictly regulated by a concentration of CO(2) resulting from respiration and photosynthesis. Our results suggest that Chlamydomonas induces high-CO(2)-responsive protein H43 by sensing the concentration of ambient CO(2) with the contribution of cell surface protein.  相似文献   
272.
273.
Persistent and stable expression of foreign genes has been achieved in mammalian cells by integrating the genes into the host chromosomes. However, this approach has several shortcomings in practical applications. For example, large scale production of protein pharmaceutics frequently requires laborious amplification of the inserted genes to optimize the gene expression. The random chromosomal insertion of exogenous DNA also results occasionally in malignant transformation of normal tissue cells, raising safety concerns in medical applications. Here we report a novel cytoplasmic RNA replicon capable of expressing installed genes stably without chromosome insertion. This system is based on the RNA genome of a noncytopathic variant Sendai virus strain, Cl.151. We found that this variant virus establishes stable symbiosis with host cells by escaping from retinoic acid-inducible gene I-interferon regulatory factor 3-mediated antiviral machinery. Using a cloned genome cDNA of Sendai virus Cl.151, we developed a recombinant RNA installed with exogenous marker genes that was maintained stably in the cytoplasm as a high copy replicon (about 4 x 10(4) copies/cell) without interfering with normal cellular function. Strong expression of the marker genes persisted for more than 6 months in various types of cultured cells and for at least two months in rat colonic mucosa without any apparent side effects. This stable RNA replicon is a potentially valuable genetic platform for various biological applications.  相似文献   
274.
In adaptive bone remodeling, it is believed that bone cells such as osteoblasts, osteocytes and osteoclasts can sense mechanical stimuli and modulate their remodeling activities. However, the mechanosensing mechanism by which these cells sense mechanical stimuli and transduce mechanical signals into intracellular biochemical signals is still not clearly understood. From the viewpoint of cell biomechanics, it is important to clarify the mechanical conditions under which the cellular mechanosensing mechanism is activated. The aims of this study were to evaluate a mechanical condition, that is, the local strain on the cell membrane, at the initiation point of the intracellular calcium signaling response to the applied mechanical stimulus in osteoblast-like MC3T3-E1 cells, and to investigate the effect of deformation velocity on the characteristics of the cellular response. To apply a local deformation to a single cell, a glass microneedle was directly indented to the cell and moved horizontally on the cell membrane. To observe the cellular response and the deformation of the cell membrane, intracellular calcium ions and the cell membrane were labeled using fluorescent dyes and simultaneously observed by confocal laser scanning microscopy. The strain distribution on the cell membrane attributable to the applied local deformation and the strain magnitude at the initiation point of the calcium signaling responses were analyzed using obtained fluorescence images. From two-dimensionally projected images, it was found that there is a local compressive strain at the initiation point of calcium signaling. Moreover, the cellular response revealed velocity dependence, that is, the cells seemed to respond with a higher sensitivity to a higher deformation velocity. From the viewpoint of cell biomechanics, these results provide us a fundamental understanding of the mechanosensing mechanism of osteoblast-like cells.  相似文献   
275.
Osteolytic lesions are rapidly progressive during the terminal stages of myeloma, and the bone pain or bone fracture that occurs at these lesions decreases the patients’ quality of life to a notable degree. In relation to the etiology of this bone destruction, it has been reported recently that MIP-1α, produced in large amounts in myeloma patients, acts indirectly on osteoclastic precursor cells, and activates osteoclasts by way of bone-marrow stromal cells or osteoblasts, although the details of this process remain obscure. In the present study, our group investigated the mechanism by which RANKL expression is induced by MIP-1α and the effects of MIP-1α on the activation of osteoclasts. RANKL mRNA and RANKL protein expressions increased in both ST2 cells and MC3T3–E1 cells in a MIP-1α concentration-dependent manner. RANKL mRNA expression began to increase at 1 h after the addition of MIP-1α; the increase became remarkable at 2 h, and continuous expression was observed subsequently. Both ST2 and MC3T3-E1 cells showed similar levels of increased RANKL protein expression at 1, 2, and 3 days after the addition of MIP-1α. After the addition of MIP-1α, the amount of phosphorylated ERK1/2 and Akt protein expressions showed an increase, as compared to the corresponding amount in the control group. On the other hand, the amount of phosphorylated p38MAPK protein expression showed a decrease from the amount in the control group after the addition of MIP-1α. U0126 (a MEK1/2 inhibitor) or LY294002 (a PI3K inhibitor) was added to ST2 and MC3T3-E1 cells, and was found to inhibit RANKL mRNA and RANKL protein expression in these cells. When SB203580, a p38MAPK inhibitor, was added, RANKL mRNA and RANKL protein expression were increased in these cells. MIP-1α was found to promote osteoclastic differentiation of C7 cells, an osteoclastic precursor cell line, in a MIP-1α concentration-dependent manner. MIP-1α promoted differentiation into osteoclasts more extensively in C7 cells incubated together with ST2 and MC3T3-E1 cells than in C7 cells incubated alone. These results suggested that MIP-1α directly acts on the osteoclastic precursor cells and induces osteoclastic differentiation. This substance also indirectly induces osteoclastic differentiation through the promotion of RANKL expression in bone-marrow stromal cells and osteoblasts. The findings of this investigation suggested that activation of the MEK/ERK and the PI3K/Akt pathways and inhibition of p38MAPK pathway were involved in RANKL expression induced by MIP-1α in bone-marrow stromal cells and osteoblasts. This finding may be useful in the development of an osteoclastic inhibitor that targets intracellular signaling factors.  相似文献   
276.
The eukaryotic sliding DNA clamp, proliferating cell nuclear antigen (PCNA), is essential for DNA replication and repair synthesis. In order to load the ring-shaped, homotrimeric PCNA onto the DNA double helix, the ATPase activity of the replication factor C (RFC) clamp loader complex is required. Although the recruitment of PCNA by RFC to DNA replication sites has well been documented, our understanding of its recruitment during DNA repair synthesis is limited. In this study, we analyzed the accumulation of endogenous and fluorescent-tagged proteins for DNA repair synthesis at the sites of DNA damage produced locally by UVA-laser micro-irradiation in HeLa cells. Accumulation kinetics and in vitro pull-down assays of the large subunit of RFC (RFC140) revealed that there are two distinct modes of recruitment of RFC to DNA damage, a simultaneous accumulation of RFC140 and PCNA caused by interaction between PCNA and the extreme N-terminus of RFC140 and a much faster accumulation of RFC140 than PCNA at the damaged site. Furthermore, RFC140 knock-down experiments showed that PCNA can accumulate at DNA damage independently of RFC. These results suggest that immediate accumulation of RFC and PCNA at DNA damage is only partly interdependent.  相似文献   
277.
Umbilical cord blood (CB) is a promising source for regeneration therapy in humans. Recently, it was shown that CB was a source of mesenchymal stem cells as well as hematopoietic stem cells, and further that the mesenchymal stem cells could differentiate into a number of cells types of mesenchymal lineage, such as cardiomyocytes (CMs), osteocytes, chondrocytes, and fat cells. Previously, we reported that brown adipose tissue derived cells (BATDCs) differentiated into CMs and these CMs could adapt functionally to repair regions of myocardial infarction. In this study, we examined whether CB mononuclear cells (CBMNCs) could effectively differentiate into CMs by coculturing them with BATDCs and determined which population among CBMNCs differentiated into CMs. The results show that BATDCs effectively induced CBMNCs that were non-hematopoietic stem cells (HSCs) (educated CB cells: e-CBCs) into CMs in vitro. E-CBCs reconstituted infarcted myocardium more effectively than non-educated CBMNCs or CD34-positive HSCs. Moreover, we found that e-CBCs after 3 days coculturing with BATDCs induced the most effective regeneration for impaired CMs. This suggests that e-CBCs have a high potential to differentiate into CMs and that adequate timing of transplantation supports a high efficiency for CM regeneration. This strategy might be a promising therapy for human cardiac disease.  相似文献   
278.
Colorectal cancer (CRC) is one of the leading causes of cancer death in humans. In order to identify novel cancer-promoting genes in CRC, we here constructed a retroviral cDNA expression library from a CRC cell line RKO, and used it for a focus formation assay with mouse 3T3 fibroblasts, leading to the identification of 42 independent cDNAs. One of such cDNAs turned out to encode purinergic receptor P2Y, G-protein coupled, 2 (P2RY2). The oncogenic potential of P2RY2 was confirmed in vitro with the focus formation assay as well as soft agar-growth assay, and also in vivo with a tumorigenicity assay in nude mice. While our P2RY2 cDNA encodes a protein with two amino-acid substitutions compared to the reported one, we have confirmed that the wild-type P2RY2 has a strong transforming potential as well. These results indicate an unexpected role of P2RY2 in the carcinogenesis of human cancers.  相似文献   
279.
Octopamine (OA) is a biogenic amine with a widespread distribution in the insect nervous system. OA modulates and/or regulates various behavioral patterns of insects as a neurotransmitter, neuromodulator, and neurohormone. OA receptors (OARs) belong to one of the families of G protein-coupled receptors (GPCRs). The binding of OA to OARs is coupled to the activation of the specific G proteins, which induces the release of intracellular second messengers such as cAMP and/or calcium. We previously reported the isolation of an OAR (BmOAR1) from Bombyx mori. In the study presented here, five mutated BmOAR1s were constructed with a point mutation in the putative binding crevice and expressed in HEK-293 cells. The S202A mutant receptor was found to retain the cAMP response to OA as does the wild-type receptor, but such function was impaired in the other four mutants (D103A, S198A, Y412F, and S198A/S202A). Furthermore, competition binding assays using [3H]OA and calcium mobilization assays gave results that were approximately consistent with those of the cAMP assays. Taken together, the results indicate that D103 and S198 are involved in the binding and activation of BmOAR1 with OA through electrostatic or hydrogen bond interactions, but S202 does not appear to participate in this process. Y412 seems to be involved in one of the active forms of BmOAR1. These findings should prove helpful in designing new pest control chemicals.  相似文献   
280.
Rubrivivax gelatinosus having both the spheroidene and spirilloxanthin biosynthetic pathways produces carotenoids (Cars) with a variety of conjugated chains, which consist of different numbers of conjugated double bonds (n), including the C=C (m) and C=O (o) bonds. When grown under anaerobic conditions, the wild type produces Cars for which n = m = 9-13, whereas under semiaerobic conditions, it additionally produces Cars for which n = m + o = 10 + 1, 13 + 1, and 13 + 2. On the other hand, a mutant, in which the latter pathway is genetically blocked, produces only Cars for which n = 9 and 10 under anaerobic conditions and n = 9, 10, and 10 + 1 under semianaerobic conditions. Those Cars that were extracted from the LH2 complex (LH2) and the reaction center (RC), isolated from the wild-type and the mutant Rvi. gelatinosus, were analyzed by HPLC, and their structures were determined by mass spectrometry and 1H NMR spectroscopy. The selective binding of Cars to those pigment-protein complexes has been characterized as follows. (1) Cars with a shorter conjugated chain are selectively bound to LH2 whereas Cars with a longer conjugated chain to the RC. (2) Shorter chain Cars with a hydroxyl group are bound to LH2 almost exclusively. This rule holds either in the absence or in the presence of the keto group. The natural selection of shorter chain Cars by LH2 and longer chain Cars by the RC is discussed, on the basis of the results now available, in relation to the light-harvesting and photoprotective functions of Cars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号