首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3301篇
  免费   194篇
  国内免费   5篇
  2023年   6篇
  2022年   16篇
  2021年   46篇
  2020年   21篇
  2019年   26篇
  2018年   43篇
  2017年   27篇
  2016年   53篇
  2015年   119篇
  2014年   149篇
  2013年   202篇
  2012年   235篇
  2011年   230篇
  2010年   152篇
  2009年   155篇
  2008年   215篇
  2007年   236篇
  2006年   220篇
  2005年   253篇
  2004年   216篇
  2003年   184篇
  2002年   188篇
  2001年   24篇
  2000年   20篇
  1999年   41篇
  1998年   52篇
  1997年   32篇
  1996年   35篇
  1995年   33篇
  1994年   39篇
  1993年   24篇
  1992年   17篇
  1991年   21篇
  1990年   19篇
  1989年   16篇
  1988年   19篇
  1987年   10篇
  1986年   4篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   7篇
  1981年   22篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1961年   2篇
排序方式: 共有3500条查询结果,搜索用时 31 毫秒
181.
cDNA of rat liver xanthine oxidoreductase (XOR), a molybdenum-containing iron-sulfur flavoprotein, was expressed in a baculovirus-insect cell system. The expressed XOR consisted of a heterogeneous mixture of native dimeric, demolybdo-dimeric, and monomeric forms, each of which was separated and purified to homogeneity. All the expressed forms contained flavin, of which the semiquinone form was stable during dithionite titration after dithiothreitol treatment, indicating that the flavin domains of all the expressed molecules have the intact conformations interconvertible between NAD(+)-dependent dehydrogenase (XDH) and O(2)-dependent oxidase (XO) types. The absorption spectrum and metal analyses showed that the monomeric form lacks not only molybdopterin but also one of the iron-sulfur centers. The reductive titration of the monomer with dithionite showed that the monomeric form required only three electrons for complete reduction, and the redox potential of the iron-sulfur center in the monomeric form is a lower value than that of FAD. In contrast to native or demolybdo-dimeric XDHs, the monomer showed a very slow reductive process with NADH under anaerobic conditions, although the conformation around FAD is a dehydrogenase form, suggesting the important role of the iron-sulfur center in the reductive process of FAD with the reduced pyridine nucleotide.  相似文献   
182.
Cytomegalovirus (CMV) is the most significant infectious cause of brain disorders in humans involving the developing brain. It is hypothesized that the brain disorders occur after recurrent reactivation of the latent infection in some kinds of cells in the brains. In order to test this hypothesis, we examined the reactivation of latent murine CMV (MCMV) infection in the mouse brain by transfer to brain slice culture. We infected neonatal and young adult mice intracerebrally with recombinant MCMV in which the lacZ gene was inserted into a late gene. The brains were removed 6 months after infection and used to prepare brain slices that were then cultured for up to 4 weeks. Reactivation of latent infection in the brains was detected by beta-galactosidase (beta-Gal) staining to assess beta-galactosidase expression. Viral replication was also confirmed by the plaque assay. Reactivation was observed in about 75% of the mice infected during the neonatal period 6 months after infection. Unexpectedly, reactivation was also observed in 75% of mice infected as young adults, although the infection ratio in the brain slices was significantly lower than that in neonatally infected mice. Beta-Gal-positive cells were observed in marginal regions of the brains or immature neural cells in the ventricular walls. Immunohistochemical staining showed that the beta-Gal-positive reactivated cells were neural stem or progenitor cells. These results suggest that brain disorders may occur long after infection by reactivation of latent infection in the immature neural cells in the brain.  相似文献   
183.
The rhizomes of Tacca chantrieri have been analysed for steroidal saponin constituents, resulting in the isolation of four new spirostanol saponins (1-4), along with one known saponin (5); their structures were elucidated on the basis of extensive spectroscopic analysis, including 2D NMR, and the results of hydrolytic cleavage. The isolated compounds were evaluated for their cytotoxic activity against HL-60 human promyelocytic leukemia cells.  相似文献   
184.
In Selenomonas ruminantium, a strictly anaerobic, Gram-negative bacterium isolated from sheep rumen, a rapid degradation of lysine decarboxylase (LDC) occurred on entry into the stationary phase of cell growth. Here, we identified a 22-kDa protein as a stimulating factor for the degradation of LDC, which was catalyzed by ATP-dependent protease(s) in S. ruminantium. The purified 22-kDa protein preparation itself had no degradation activity towards LDC but it was required for the degradation of LDC by ATP-dependent proteases in a cell-free system. The 22-kDa protein had similar biochemical and biophysical characteristics to those of antizyme, the regulator for the degradation of mammalian ODC, which had been reported only in mammalian cells. From the sequencing data of the N-terminal 30 amino acid residues of the 22-kDa protein preparation, 22-kDa protein was found to be a new protein which was distinguished from antizyme. This is the first report of the presence of an antizyme-like regulator protein in a prokaryote.  相似文献   
185.
The transforming growth factor-beta (TGF-beta) superfamily consists of a group of secreted signaling molecules that perform important roles in the regulation of cell growth and differentiation. TGF-beta activated kinase-1 binding protein-1 (TAB1) was identified as a molecule that activates TGF-beta activated kinase-1 (TAK1). Recent studies have revealed that the TAB1-TAK1 interaction plays an important role in signal transduction in vitro, but little is known about the role of these molecules in vivo. To investigate the role of TAB1 during development, we cloned the murine Tab1 gene and disrupted it by homologous recombination. Homozygous Tab1 mutant mice died, exhibiting a bloated appearance with extensive edema and hemorrhage at the late stages of gestation. By histological examinations, it was revealed that mutant embryos exhibited cardiovascular and lung dysmorphogenesis. Tab1 mutant embryonic fibroblast cells displayed drastically reduced TAK1 kinase activities and decreased sensitivity to TGF-beta stimulation. These results indicate a possibility that TAB1 plays an important role in mammalian embryogenesis and is required for TAK1 activation in TGF-beta signaling.  相似文献   
186.
187.
188.

Background  

Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs), the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level.  相似文献   
189.
Na YH  He Y  Shuai X  Kikkawa Y  Doi Y  Inoue Y 《Biomacromolecules》2002,3(6):1179-1186
The miscibility and phase behavior of two stereoisomer forms of poly(lactide) (PLA: poly (L-lactide) (PLLA) and poly(DL-lactide) (PDLLA)) blends with poly(epsilon-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and PCL-b-monomethoxy-PEG (PCL-b-MPEG) block copolymers have been investigated by differential scanning calorimetry (DSC). The DSC thermal behavior of both the blend systems revealed that PLA is miscible with the PEG segment phase of PCL-b-(M)PEG but is still immiscible with its PCL segment phase although PCL was block-copolymerized with PEG. On the basis of these results, PCL-b-PEG was added as a compatibilizer to PLA/PCL binary blends. The improvement in mechanical properties of PLA/PCL blends was achieved as anticipated upon the addition of PCL-b-PEG. In addition, atomic force microscopy (AFM) measurements have been performed in order to study the compositional synergism to be observed in mechanical tests. AFM observations of the morphological dependency on blend composition indicate that PLA/PCL blends are immiscible but compatible to some extent and that synergism of compatibilizing may be maximized in the compositional blend ratio before apparent phase separation and coarsening.  相似文献   
190.
Comprehensive analysis of protein-protein interactions is a challenging endeavor of functional proteomics and has been best explored in the budding yeast. The yeast protein interactome analysis was achieved first by using the yeast two-hybrid system in a proteome-wide scale and next by large-scale mass spectrometric analysis of affinity-purified protein complexes. While these interaction data have led to a number of novel findings and the emergence of a single huge network containing thousands of proteins, they suffer many false signals and fall short of grasping the entire interactome. Thus, continuous efforts are necessary in both bioinformatics and experimentation to fully exploit these data and to proceed another step forward to the goal. Computational tools to integrate existing biological knowledge buried in literature and various functional genomic data with the interactome data are required for biological interpretation of the huge protein interaction network. Novel experimental methods have to be developed to detect weak, transient interactions involving low abundance proteins as well as to obtain clues to the biological role for each interaction. Since the yeast two-hybrid system can be used for the mapping of the interaction domains and the isolation of interaction-defective mutants, it would serve as a technical basis for the latter purpose, thereby playing another important role in the next phase of protein interactome research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号