首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3314篇
  免费   194篇
  国内免费   5篇
  2023年   6篇
  2022年   16篇
  2021年   46篇
  2020年   21篇
  2019年   26篇
  2018年   44篇
  2017年   28篇
  2016年   56篇
  2015年   122篇
  2014年   151篇
  2013年   203篇
  2012年   236篇
  2011年   231篇
  2010年   153篇
  2009年   154篇
  2008年   219篇
  2007年   236篇
  2006年   220篇
  2005年   254篇
  2004年   218篇
  2003年   184篇
  2002年   189篇
  2001年   24篇
  2000年   20篇
  1999年   42篇
  1998年   52篇
  1997年   32篇
  1996年   34篇
  1995年   33篇
  1994年   39篇
  1993年   23篇
  1992年   16篇
  1991年   21篇
  1990年   19篇
  1989年   13篇
  1988年   17篇
  1987年   9篇
  1986年   4篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   7篇
  1981年   22篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1961年   2篇
排序方式: 共有3513条查询结果,搜索用时 15 毫秒
911.
CD44 is a major cell surface adhesion molecule for hyaluronan, a component of the extracellular matrix, and is implicated in tumor metastasis and invasion. We reported previously that hyaluronan oligosaccharides induce CD44 cleavage from tumor cells. Here we show that engagement of CD44 promotes CD44 cleavage and tumor cell migration, both of which were suppressed by a metalloproteinase inhibitor KB-R7785 and tissue inhibitor of metalloproteinases-1 (TIMP-1) but not by TIMP-2. We also present evidence that blockade of metalloproteinase-disintegrin ADAM10 (a disintegrin and metalloproteinase 10) by RNA interference suppresses CD44 cleavage induced by its ligation. Engagement of CD44 concurrently induced activation of the small GTPase Rac1 and led to drastic changes in cell morphology and actin cytoskeleton with redistribution of CD44 to newly generated membrane ruffling areas. A fluorescence resonance energy transfer approach to visualize GTP-bound Rac1 in living cells revealed the localization of the active Rac1 in the leading edge of the membrane ruffling areas upon ligation of CD44. Taken together, our results indicate that the cleavage of CD44 catalyzed by ADAM10 is augmented by the intracellular signaling elicited by engagement of CD44, through Rac-mediated cytoskeletal rearrangement, and suggest that CD44 cleavage contributes to the migration and invasion of tumor cells.  相似文献   
912.
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the ubiquitous protein chaperone hsp90. We have shown previously that nNOS expressed in Sf9 cells where endogenous heme levels are low is activated from the apo- to the holo-enzyme by addition of exogenous heme to the culture medium, and this activation is inhibited by radicicol, a specific inhibitor of hsp90 (Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J. M., Lowe, E. R., Kamada, Y., Pratt, W. B., and Osawa, Y. (2002) J. Biol. Chem. 278, 15465-15468). In this work, we examine heme binding by apo-nNOS to form the active enzyme in a cell-free system. We show that cytosol from Sf9 cells facilitates heme-dependent apo-nNOS activation by promoting functional heme insertion into the enzyme. Sf9 cytosol also converts the glucocorticoid receptor (GR) to a state where the hydrophobic ligand binding cleft is open to access by steroid. Both cell-free heme activation of purified nNOS and activation of steroid binding activity of the immunopurified GR are inhibited by radicicol treatment of Sf9 cells prior to cytosol preparation, and addition of purified hsp90 to cytosol partially overcomes this inhibition. Although there is an hsp90-dependent machinery in Sf9 cytosol that facilitates heme binding by apo-nNOS, it is clearly different from the machinery that facilitates steroid binding by the GR. hsp90 regulation of apo-nNOS heme activation is very dynamic and requires higher concentrations of radicicol for its inhibition, whereas GR steroid binding is determined by assembly of stable GR.hsp90 heterocomplexes that are formed by a purified five-chaperone machinery that does not activate apo-nNOS.  相似文献   
913.
914.
Periodontitis is a common inflammatory disease causing destruction of periodontal tissues. It is a multifactor disease involving genetic factors and oral environmental factors. To determine genetic risk factors associated with aggressive periodontitis or severe chronic periodontitis, single nucleotide polymorphisms (SNPs) in multiple candidate genes were investigated in Japanese. We studied 134 patients with aggressive periodontitis, 117 patients with severe chronic periodontitis, and 125 healthy volunteers without periodontitis, under case-control setting, and 310 SNPs in 125 candidate genes were genotyped. Association evaluation by Fisher's exact test (p < 0.01) revealed statistically significant SNPs in multiple genes, not only in inflammatory mediators (IL6ST and PTGDS, associated with aggressive periodontitis; and CTSD, associated with severe chronic periodontitis), but also in structural factors of periodontal tissues (COL4A1, COL1A1, and KRT23, associated with aggressive periodontitis; and HSPG2, COL17A1, and EGF, associated with severe chronic periodontitis). These appear to be good candidates as genetic factors for future study.  相似文献   
915.
The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes.  相似文献   
916.
917.
The chain-length dependence of the alpha-helix to beta-sheet transition in poly(L-lysine) is studied by temperature-tuned FTIR spectroscopy. This study shows that heterogeneous samples of poly(L-lysine), comprising polypeptide chains with various lengths, undergo the alpha-beta transition at an intermediate temperature compared to homogeneous ingredients. This holds true as long as each individual fraction of the polypeptide is capable of adopting an antiparallel beta-sheet structure. The tendency is that the longer chain is, the lower the alpha-beta transition temperature is, which has been linked to the presence of distorted or solvated helices with turns or beta sheets in elongating chains of poly(L-lysine). As such helical structures are apparently conducive to the alpha-beta transition, this draws a comparison to the hypothesis of metastable protein conformational states being a common stage in amyloid-formation pathways. The antiparallel architecture of the beta sheet is likely to reflect the pretransition interhelical interactions in poly(L-lysine). Namely, the chains are arranged in an antiparallel manner because of energetically favored antiparallel pre-assembly of dipolar alpha helices.  相似文献   
918.
Wnt and estrogen signaling represent important regulatory pathways, each controlling a wide range of biological processes. While an increasing number of observations suggest potential convergence between these pathways, no direct evidence of their functional interaction has been reported. Using human colon and breast cancer cells, we found that estrogen receptor (ER) alpha- and beta-catenin precipitated within the same immunocomplexes, reciprocally enhanced the transactivation of cognate reporter genes, and were reciprocally recruited to cognate response elements in the promoters of endogenous target genes. Using transgenic Drosophila that ectopically expressed human ERalpha alone or together with metabolically stable beta-catenin/Armadillo mutants, we demonstrated genetic interaction between these signal transducers in vivo. Thus, we present here the first direct evidence of cross-talk between Wnt and estrogen signaling pathways via functional interaction between beta-catenin and ERalpha.  相似文献   
919.
Mammalian Staufen2 (Stau2), a brain-specific double-stranded RNA-binding protein, is involved in the localization of mRNA in neurons. To gain insights into the function of Stau2, the subcellular localization of Stau2 isoforms fused to the green fluorescence protein was examined. Fluorescence microscopic analysis showed that Stau2 functions as a nucleocytoplasmic shuttle protein. The nuclear export of the 62-kDa isoform of Stau2 (Stau2(62)) is mediated by the double-stranded RNA-binding domain 3 (RBD3) because a mutation to RBD3 led to nuclear accumulation. On the other hand, the shorter isoform of Stau2, Stau2(59), is exported from the nucleus by two distinct pathways, one of which is RBD3-mediated and the other of which is CRM1 (exportin 1)-dependent. The nuclear export signal recognized by CRM1 was found to be located in the N-terminal region of Stau2(59). These results suggest that Stau2 may carry a variety of RNAs out of the nucleus, using the two export pathways. The present study addresses the issue of why plural Stau2 isoforms are expressed in neurons.  相似文献   
920.
Cleavage of the beta-aryl ether linkage is the most important process in lignin degradation. Here we characterize the three tandemly located glutathione S-transferase (GST) genes, ligF, ligE, and ligG, from low-molecular-weight lignin-degrading Sphingomonas paucimobilis SYK-6, and we describe the actual roles of these genes in the beta-aryl ether cleavage. Based on the identification of the reaction product by electrospray ionization-mass spectrometry, a model compound of beta-aryl ether, alpha-(2-methoxyphenoxy)-beta-hydroxypropiovanillone (MPHPV), was transformed by LigF or LigE to guaiacol and alpha-glutathionyl-beta-hydroxypropiovanillone (GS-HPV). This result suggested that LigF and LigE catalyze the nucleophilic attack of glutathione on the carbon atom at the beta position of MPHPV. High-pressure liquid chromatography-circular dichroism analysis indicated that LigF and LigE each attacked a different enantiomer of the racemic MPHPV preparation. The ligG gene product specifically catalyzed the elimination of glutathione from GS-HPV generated by the action of LigF. This reaction then produces an achiral compound, beta-hydroxypropiovanillone, which is further degraded by this strain. Disruption of the ligF, ligE, and ligG genes in SYK-6 showed that ligF is essential to the degradation of one of the MPHPV enantiomers, and the alternative activities which metabolize the substrates of LigE and LigG are present in this strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号