首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3452篇
  免费   207篇
  国内免费   5篇
  3664篇
  2023年   9篇
  2022年   19篇
  2021年   46篇
  2020年   23篇
  2019年   26篇
  2018年   45篇
  2017年   28篇
  2016年   57篇
  2015年   124篇
  2014年   150篇
  2013年   207篇
  2012年   239篇
  2011年   239篇
  2010年   159篇
  2009年   163篇
  2008年   225篇
  2007年   246篇
  2006年   227篇
  2005年   262篇
  2004年   228篇
  2003年   193篇
  2002年   201篇
  2001年   27篇
  2000年   27篇
  1999年   43篇
  1998年   52篇
  1997年   33篇
  1996年   35篇
  1995年   33篇
  1994年   42篇
  1993年   24篇
  1992年   19篇
  1991年   24篇
  1990年   19篇
  1989年   18篇
  1988年   19篇
  1987年   11篇
  1986年   8篇
  1985年   17篇
  1984年   19篇
  1983年   8篇
  1982年   9篇
  1981年   23篇
  1980年   9篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1961年   2篇
排序方式: 共有3664条查询结果,搜索用时 15 毫秒
51.
Marine coccolithophorids (Haptophyceae) produce calcified scales “coccoliths” which are composed of CaCO3 and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO3 crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO3 crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO3 crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.  相似文献   
52.
53.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds with guaiacyl moieties, which are converted into protocatechuate by the actions of lignin degradation enzymes in this strain. Protocatechuate is a key metabolite in the SYK-6 degradation of lignin compounds with guaiacyl moieties, and it is thought that it degrades to pyruvate and oxaloacetate via the protocatechuate 4,5-cleavage pathway. In a 10.5-kb EcoRI fragment carrying the protocatechuate 4,5-dioxygenase gene (ligAB) (Y. Noda, S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. J. Bacteriol. 172:2704–2709, 1990), we found the ligI gene encoding 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase. PDC hydrolase is a member of this pathway and catalyzes the interconversion between PDC and 4-carboxy-2-hydroxymuconic acid (CHM). The ligI gene is thought to be transcribed divergently from ligAB and consists of an 879-bp open reading frame encoding a polypeptide with a molecular mass of 32,737 Da. The ligI gene product (LigI), expressed in Escherichia coli, was purified to near-homogeneity and was estimated to be a monomer (31.6 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9. The optimum pH for hydrolysis of PDC is 8.5, the optimum pH for synthesis of PDC is 6.0 to 7.5, and the Km values for PDC and CHM are 74 and 49 μM, respectively. LigI activity was inhibited by the addition of thiol reagents, suggesting that the cysteine residue is a catalytic site. LigI is more resistant to metal ion inhibition than the PDC hydrolases of Pseudomonas ochraceae (K. Maruyama, J. Biochem. 93:557–565, 1983) and Comamonas testosteroni (P. J. Kersten, S. Dagley, J. W. Whittaker, D. M. Arciero, and J. D. Lipscomb, J. Bacteriol. 152:1154–1162, 1982). The insertional inactivation of the ligI gene in S. paucimobilis SYK-6 led to the complete loss of PDC hydrolase activity and to a growth defect on vanillic acid; it did not affect growth on syringic acid. These results indicate that the ligI gene is essential for the growth of SYK-6 on vanillic acid but is not responsible for the growth of SYK-6 on syringic acid.  相似文献   
54.
A novel metabolic pathway was found in the yeast Trichosporon moniliiforme WU-0401 for salicylate degradation via phenol as the key intermediate. When 20 mM salicylate was used as the sole carbon source for the growth of strain WU-0401, phenol was detected as a distinct metabolite in the culture broth. Analysis of the products derived from salicylate or phenol through reactions with resting cells and a cell-free extract of strain WU-0401 indicated that salicylate is initially decarboxylated to phenol and then oxidized to catechol, followed by aromatic ring cleavage to form cis-cis muconate.  相似文献   
55.
Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP-GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.  相似文献   
56.
Summary The structure of hemocytes in the normal state and during blood coagulation, and the intracellular localization of three clotting factors and two antimicrobial factors were examined in the Japanese horseshoe crabTachypleus tridentatus. Two types of hemocytes were found in the circulating blood: non-granular and granular hemocytes. The latter contained numerous dense granules classed into two major types: L- and D-granules. The L-granules were larger (up to 1.5 m in diameter) and less electron-dense than the D-granules (less than 0.6 m in diameter). The L-granules contained three clotting factors and one antimicrobial factor, whereas the D-granules exclusively contained the other antimicrobial factor. After treatment with endotoxin, the L-granules were released more rapidly than the D-granules, although almost all granules were finally exocytosed. The granular hemocyte possessed a single Golgi complex; possible precursor granules of L-granules and D-granules contained tubular and condensed dense material, respectively. These data are discussed in relation to the self-defense mechanisms of the horseshoe crab.  相似文献   
57.

Background

To improve the quality of life of colorectal cancer patients, it is important to establish new screening methods for early diagnosis of colorectal cancer.

Methodology/Principal Findings

We performed serum metabolome analysis using gas-chromatography/mass-spectrometry (GC/MS). First, the accuracy of our GC/MS-based serum metabolomic analytical method was evaluated by calculating the RSD% values of serum levels of various metabolites. Second, the intra-day (morning, daytime, and night) and inter-day (among 3 days) variances of serum metabolite levels were examined. Then, serum metabolite levels were compared between colorectal cancer patients (N = 60; N = 12 for each stage from 0 to 4) and age- and sex-matched healthy volunteers (N = 60) as a training set. The metabolites whose levels displayed significant changes were subjected to multiple logistic regression analysis using the stepwise variable selection method, and a colorectal cancer prediction model was established. The prediction model was composed of 2-hydroxybutyrate, aspartic acid, kynurenine, and cystamine, and its AUC, sensitivity, specificity, and accuracy were 0.9097, 85.0%, 85.0%, and 85.0%, respectively, according to the training set data. In contrast, the sensitivity, specificity, and accuracy of CEA were 35.0%, 96.7%, and 65.8%, respectively, and those of CA19-9 were 16.7%, 100%, and 58.3%, respectively. The validity of the prediction model was confirmed using colorectal cancer patients (N = 59) and healthy volunteers (N = 63) as a validation set. At the validation set, the sensitivity, specificity, and accuracy of the prediction model were 83.1%, 81.0%, and 82.0%, respectively, and these values were almost the same as those obtained with the training set. In addition, the model displayed high sensitivity for detecting stage 0–2 colorectal cancer (82.8%).

Conclusions/Significance

Our prediction model established via GC/MS-based serum metabolomic analysis is valuable for early detection of colorectal cancer and has the potential to become a novel screening test for colorectal cancer.  相似文献   
58.
Caffeic acid is a biologically active molecule that has various beneficial properties, including antioxidant, anticancer, and anti-inflammatory activities. In this study, we explored the catalytic potential of a bacterial cytochrome P450, CYP199A2, for the biotechnological production of caffeic acid. When the CYP199A2 enzyme was reacted with p-coumaric acid, it stoichiometrically produced caffeic acid. The crystal structure of CYP199A2 shows that Phe at position 185 is situated directly above, and only 6.35 Å from, the heme iron. This F185 residue was replaced with hydrophobic or hydroxylated amino acids using site-directed mutagenesis to create mutants with novel and improved catalytic properties. In whole-cell assays with the known substrate of CYP199A2, 2-naphthoic acid, only the wild-type enzyme hydroxylated 2-naphthoic acid at the C-7 and C-8 positions, whereas all of the active F185 mutants exhibited a preference for C-5 hydroxylation. Interestingly, several F185 mutants (F185V, F185L, F185I, F185G, and F185A mutants) also acquired the ability to hydroxylate cinnamic acid, which was not hydroxylated by the wild-type enzyme. These results demonstrate that F185 is an important residue that controls the regioselectivity and the substrate specificity of CYP199A2. Furthermore, Escherichia coli cells expressing the F185L mutant exhibited 5.5 times higher hydroxylation activity for p-coumaric acid than those expressing the wild-type enzyme. By using the F185L whole-cell catalyst, the production of caffeic acid reached 15 mM (2.8 g/liter), which is the highest level so far attained in biotechnological production of this compound.  相似文献   
59.
60.
A new type polyamide containing a glucose unit in the main chain has been synthesized by the polymerization of C1, C3, C4 blocked C6-carboxymethylglucosamine, prepared from chitin. The deblocking procedure gave the water-soluble polyamide, of MW 1.5 × 104, which can be regarded as a model for the recognition site of lectin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号