首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1385篇
  免费   73篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   16篇
  2017年   16篇
  2016年   25篇
  2015年   32篇
  2014年   43篇
  2013年   101篇
  2012年   70篇
  2011年   75篇
  2010年   51篇
  2009年   52篇
  2008年   77篇
  2007年   79篇
  2006年   62篇
  2005年   90篇
  2004年   89篇
  2003年   92篇
  2002年   90篇
  2001年   20篇
  2000年   17篇
  1999年   33篇
  1998年   27篇
  1997年   21篇
  1996年   18篇
  1995年   10篇
  1994年   8篇
  1993年   14篇
  1992年   17篇
  1991年   19篇
  1990年   21篇
  1989年   14篇
  1988年   13篇
  1987年   18篇
  1986年   4篇
  1985年   10篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   9篇
  1976年   3篇
  1975年   6篇
  1974年   7篇
  1973年   8篇
  1972年   3篇
  1966年   2篇
排序方式: 共有1458条查询结果,搜索用时 31 毫秒
261.
Binding of immunoglobulin protein (BiP) is a major molecular chaperone localized in endoplasmic reticulum (ER). It has been demonstrated to interact with nascent Ig. However, contrary to other ER-resident heat shock proteins such as gp96, calreticulin, and ORP150, it is not clear whether tumor-derived BiP plays a role in inducing antitumor immunity. In this study, we show that the tumor-derived secreted form of BiP is capable of inducing antitumor CD8(+) T cell responses. We constructed an ER-retention signal KDEL-deleted mutant of BiP cDNA and transfected it to tumor cells, which resulted in continuous secretion of tumor-derived BiP into the extracellular milieu. We show that this secreted BiP is taken up by bone marrow-derived dendritic cells, and thereafter BiP-associated Ag peptide is cross-presented in association with MHC class I molecules, resulting in elicitation of an Ag-specific CD8(+) T cell response and antitumor effect. This strategy to boost antitumor immune responses shows that a tumor could be its own cellular vaccine via gene modification of the secretion of the tumor Ag-BiP complex.  相似文献   
262.
Fascin1 promotes cell migration of mature dendritic cells   总被引:1,自引:0,他引:1  
Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes.  相似文献   
263.
RNA can function both as an informational molecule and as a catalyst in living organisms. This duality is the premise of the RNA world hypothesis. However, one flaw in the hypothesis that RNA was the most essential molecule in primitive life is that no RNA self-replicating system has been found in nature. To verify whether RNA has the potential for self-replication, we constructed a new RNA self-assembling ribozyme that could have conducted an evolvable RNA self-replication reaction. The artificially designed, in vitro selected ligase ribozyme was employed as a prototype for a self-assembling ribozyme. The ribozyme is composed of two RNA fragments (form R1·Z1) that recognize another R1·Z1 molecule as their substrate and perform the high turnover ligation reaction via two RNA tertiary interaction motifs. Furthermore, the substrate recognition of R1·Z1 is tolerant of mutations, generating diversity in the corresponding RNA self-replicating network. Thus, we propose that our system implies the significance of RNA tertiary motifs in the early RNA molecular evolution of the RNA world.  相似文献   
264.
Accumulating evidence indicates that dysfunction of mitochondria is a common feature of Parkinson disease. Functional loss of a familial Parkinson disease-linked gene, BRPK/PINK1 (PINK1), results in deterioration of mitochondrial functions and eventual neuronal cell death. A mitochondrial chaperone protein has been shown to be a substrate of PINK1 kinase activity. In this study, we demonstrated that PINK1 has another action point in the cytoplasm. Phosphorylation of Akt at Ser-473 was enhanced by overexpression of PINK1, and the Akt activation was crucial for protection of SH-SY5Y cells from various cytotoxic agents, including oxidative stress. Enhanced Akt phosphorylation was not due to activation of phosphatidylinositol 3-kinase but due to activation of mammalian target of rapamycin complex 2 (mTORC2) by PINK1. Rictor, a specific component of mTORC2, was phosphorylated by overexpression of PINK1. Furthermore, overexpression of PINK1 enhanced cell motility. These results indicate that PINK1 exerts its cytoprotective function not only in mitochondria but also in the cytoplasm through activation of mTORC2.  相似文献   
265.
266.
Novel benzo[a]cycloheptene derivatives were prepared for the purpose of searching new neuropeptide Y-Y5 (NPY-Y5) receptor antagonists. The structure-activity relationships are described and compound 2o (FR226928) showed the most potent affinity for Y5 receptor of all we prepared and was found to have higher potency and better selectivity for Y5 over Y1 receptor affinities when compared with the known lead compound 1.  相似文献   
267.
The number of people in Japan suffering from Cryptomeria japonica pollinosis has risen considerably since the 1970s as the area planted with this species has increased. In order to reduce the amount of pollen dispersed, breeding programs using trees with male-sterile genes have been implemented. We have constructed partial linkage maps surrounding a male sterility gene (ms-1) in four families of C. japonica to facilitate this process. The marker most closely linked to ms-1 was different in the four mapping families: gSNP00438, gSNP01452, estSNP00083, and estSNP01228 in the TO13S family (3.1 cM from ms-1); gSNP05835 and gSNP06239 in the S3T67 family (2.0 cM from ms-1); gSNP05835 in the F1N4 family (1.5 cM from ms-1); and gSNP06239 in the T5 family (4.2 cM from ms-1). This is probably mainly due to genetic differences between the parents used to produce the mapping families. However, in all four families, the accuracy with which male-sterile trees could be identified using the closest markers was more than 96.0 %. These results suggested that marker-assisted selection of male-sterile trees within a given family is feasible using the closest flanking markers to the ms-1 locus. We also developed an allele-specific PCR marker for identifying male-sterile trees in the TO13S family from which male-sterile seedlings are produced. Allele-specific PCR using three primer combinations produced two clear fragments, which could be easily separated by agarose gel electrophoresis: one fragment with a molecular weight of 410 bp, which was present in all samples and could thus be used as a positive control, and another of lower molecular weight (196 bp), which was specific for male-sterile trees. This marker makes it possible to carry out a simple and economical PCR assay for the detection of the SNP linked to the target gene without the need to use fluorescent labels. This study shows how a simple allele-specific PCR marker for an important major gene in a forest tree species can be developed using information from a high-density linkage map. In addition, our results will facilitate the first application of MAS (marker assisted selection) in conifers because the male sterility in C. japonica has several advantages and may be one of the best examples for MAS in conifers.  相似文献   
268.
Renal α-Klotho (α-KL) plays a fundamental role as a co-receptor for fibroblast growth factor 23 (FGF23), a phosphaturic hormone and regulator of 1,25(OH)2 vitamin D3 (1,25VitD3). Disruption of FGF23-α-KL signaling is thought to be an early hallmark of chronic kidney disease (CKD) involving reduced renal α-KL expression and a reciprocal rise in serum FGF23. It remains unclear, however, whether the rise in FGF23 is related to the loss of renal α-KL. We evaluated α-KL expression in renal biopsy samples and measured levels of several parameters of mineral metabolism, as well as soluble α-KL (sKL), in serum and urinary samples from CKD patients (n = 236). We found that although renal α-KL levels were significantly reduced and serum FGF23 levels were significantly elevated in early and intermediate CKD, serum phosphate levels remained within the normal range. Multiple regression analysis showed that the increases in FGF23 were significantly associated with reduced renal function and elevated serum phosphate, but were not associated with loss of renal α-KL. Moreover, despite falling renal α-KL levels, the increase in FGF23 enhanced urinary fractional excretion of phosphate and reduced serum 1,25VitD3 levels in early and intermediate CKD, though not in advanced CKD. Serum sKL levels also fell significantly over the course of CKD, and renal α-KL was a significant independent determinant of sKL. These results demonstrate that FGF23 levels rise to compensate for renal failure-related phosphate retention in early and intermediate CKD. This enables FGF23-α-KL signaling and a neutral phosphate balance to be maintained despite the reduction in α-KL. In advanced CKD, however, renal α-KL declines further. This disrupts FGF23 signaling, and serum phosphate levels significantly increase, stimulating greater FGF23 secretion. Our results also suggest the serum sKL concentration may be a useful marker of renal α-KL expression levels.  相似文献   
269.
The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-β in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy.  相似文献   
270.
Neo-fermented buckwheat sprouts (neo-FBS) contain angiotensin-converting enzyme (ACE) inhibitors and vasodilators with blood pressure-lowering (BPL) properties in spontaneously hypertensive rats (SHRs). In this study, we investigated antihypertensive mechanisms of six BPL peptides isolated from neo-FBS (FBPs) by a vasorelaxation assay and conventional in vitro, in vivo, and a new ex vivo ACE inhibitory assays. Some FBPs demonstrated moderate endothelium-dependent vasorelaxation in SHR thoracic aorta and all FBPs mildly inhibited ACE in vitro. Orally administered FBPs strongly inhibited ACE in SHR tissues. To investigate detailed ACE-inhibitory mechanism of FBPs in living body tissues, we performed the ex vivo assay by using endothelium-denuded thoracic aorta rings isolated from SHRs, which demonstrated that FBPs at low concentration effectively inhibited ACE in thoracic aorta tissue and suppressed angiotensin II-mediated vasoconstriction directly associated with BPL. These results indicate that the main BPL mechanism of FBP was ACE inhibition in living body tissues, suggesting that high FBP''s bioavailability including absorption, tissue affinity, and tissue accumulation was responsible for the superior ACE inhibition in vivo. We propose that our ex vivo assay is an efficient and reliable method for evaluating ACE-inhibitory mechanism responsible for BPL activity in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号