首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1385篇
  免费   73篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   16篇
  2017年   16篇
  2016年   25篇
  2015年   32篇
  2014年   43篇
  2013年   101篇
  2012年   70篇
  2011年   75篇
  2010年   51篇
  2009年   52篇
  2008年   77篇
  2007年   79篇
  2006年   62篇
  2005年   90篇
  2004年   89篇
  2003年   92篇
  2002年   90篇
  2001年   20篇
  2000年   17篇
  1999年   33篇
  1998年   27篇
  1997年   21篇
  1996年   18篇
  1995年   10篇
  1994年   8篇
  1993年   14篇
  1992年   17篇
  1991年   19篇
  1990年   21篇
  1989年   14篇
  1988年   13篇
  1987年   18篇
  1986年   4篇
  1985年   10篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   9篇
  1976年   3篇
  1975年   6篇
  1974年   7篇
  1973年   8篇
  1972年   3篇
  1966年   2篇
排序方式: 共有1458条查询结果,搜索用时 453 毫秒
141.
Roots and bark from plants belonging to genus Salacia of the family Hippocrateaceae (Salacia reticulata, Salacia oblonga, etc.) have been used for traditional Ayurvedic medicine, particularly for the treatment of diabetes. In our study, we evaluated the gene expression profiles in the small intestinal epithelium of rats that were given a Salacia plant extract to gain insight into its effects on the small intestine. In detail, DNA microarray analysis was performed to evaluate the gene expression profiles in the rat ileal epithelium. The intestinal bacterial flora was also studied using T-RFLP (Nagashima method) in these rats. Expressions of many immune-related genes, especially Th1-related genes associated with cell-mediated immunity, were found to increase in the small intestinal epithelium and the intestinal bacterial flora became similar to those in the case with Salacia plant extract administration. Our study thus revealed that Salacia plant extract exerts bioregulatory functions by boosting intestinal immunity.  相似文献   
142.
Gangliosides (sialic acid-containing glycosphingolipids) play important roles in many physiological functions, including synaptic plasticity in the hippocampus, which is considered as a cellular mechanism of learning and memory. In the present study, three types of synaptic plasticity, long-term potentiation (LTP), long-term depression (LTD) and reversal of LTP (depotentiation, DP), in the field excitatory post-synaptic potential in CA1 hippocampal neurons and learning behavior were examined in β1,4-N-acetylgalactosaminyltransferase (β1,4 GalNAc-T; GM2/GD2 synthase) gene transgenic (TG) mice, which showed a marked decrease in b-pathway gangliosides (GQ1b, GT1b and GD1b) in the brain and isolated hippocampus compared with wild-type (WT) mice. The magnitude of the LTP induced by tetanus (100 pulses at 100?Hz) in TG mice was significantly smaller than that in control WT mice, whereas there was no difference in the magnitude of the LTD induced by three short trains of low-frequency stimulation (LFS) (200 pulses at 1?Hz) at 20?min intervals between the two groups of mice. The reduction in the LTP produced by delivering three trains of LFS (200 pulses at 1?Hz, 20?min intervals) was significantly greater in the TG mice than in the WT mice. Learning was impaired in the four-pellet taking test (4PTT) in TG mice, with no significant difference in daily activity or activity during the 4PTT between TG and WT mice. These results suggest that the overexpression of β1,4 GalNAc-T resulted in altered synaptic plasticity of LTP and DP in hippocampal CA1 neurons and learning in the 4PTT, and this is attributable to the shift from b-pathway gangliosides to a-pathway gangliosides.  相似文献   
143.
We identified a gene product of At5g19500 (At5g19500p) from Arabidopsis thaliana that is homologous to EcTyrP, a tyrosine-specific transporter from Escherichia coli. Computational analyses of the amino acid sequence of At5g19500p predicted 11 transmembrane domains (TMDs) and a potential plastid targeting signal at its amino terminus. As a first step toward understanding the possible role of At5g19500p in plant cells, we attempted to determine the localization of At5g19500p by an in vitro chloroplastic import assay using At5g19500p translated in a cell-free wheat germ system (Madin et al., Proc. Natl. Acad. Sci. USA, 97, 559-564 (2000)), followed by subfractionation of the chloroplasts. At5g19500p was successfully imported into chloroplasts, and the newly transported mature form of At5g19500p was recovered from the inner envelope membrane.  相似文献   
144.
Inflammation is associated with the development of atherosclerotic vascular lesions and some inflammatory parameters are used as cardiovascular (CV) risk markers. The present study was designed to assess the predictive power of interleukin (IL)-6 for future CV events. In 121 Japanese patients with multiple CV risk factors and/or disease, serum concentrations of IL-6 and high sensitive C-reactive protein (hs-CRP) were measured. During follow-up periods (mean, 2.9 years) after the baseline assessment, 50 patients newly experienced CV events such as stroke/transient ischemic attack (n=10), heart failure hospitalization (n=6), acute coronary syndrome (n=7), and revascularization for coronary artery disease (n=15) and peripheral arterial disease (n=12). The serum level of IL-6, but not hs-CRP, was significantly higher in patients who had CV events than in event-free subjects (3.9±2.6 and 3.0±2.2 pg/mL, P=0.04). When the patients were divided into three groups by tertiles of basal levels of IL-6 (<1.85, 1.85-3.77, and ≥3.77 pg/mL), cumulative event-free rates by the Kaplan-Meier method were decreased according to the increase in basal IL-6 levels (65%, 50%, and 19% in the lowest, middle, and highest tertiles of IL-6, respectively; log-rank test, P=0.002). By univariate Cox regression analysis, previous CV disease, creatinine clearance, and serum IL-6 levels were significantly associated with CV events during follow-up. Among these possible predictors, the highest tertile of IL-6 was only an independent determinant for the morbidity in the multivariate analysis (hazard ratio 2.80 vs. lowest tertile, P=0.006). These findings indicate that IL-6 is a powerful independent predictor of future CV events in high-risk Japanese patients, suggesting its predictive value is superior to that of hs-CRP.  相似文献   
145.
The ability to synthesize cellulose by Asaia bogorensis, a member of the acetic acid bacteria, was studied in two substrains, AJ and JCM. Although both strains have identical 16S rDNA sequence, only the AJ strain formed a solid pellicle at the air-liquid interface in static culture medium, and we analyzed this pellicle using a variety of techniques. In the presence of cellulase, glucose and cellobiose were released from the pellicle suggesting that it is made of cellulose. Field emission electron microscopy allowed the visualization of a 3D knitted structure with ultrafine microfibrils (approximately 5-20 nm in width) in cellulose from A. bogorensis compared with the 40-100 nm wide microfibrils observed in cellulose isolated from Gluconacetobacter xylinus, suggesting differences in the mechanism of cellulose biosynthesis or organization of cellulose synthesizing sites in these two related bacterial species. Identifying these differences will lead to a better understanding of cellulose biosynthesis in bacteria.  相似文献   
146.
147.

Background

We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI.

Methods and Results

In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group.

Conclusion

The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI.  相似文献   
148.
In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES) cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2), and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit(+) endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells.  相似文献   
149.
It is difficult to understand precisely the physiological actions of herbs because they contain a complex array of constituent molecules. In the present study we used DNA microarray data for 12600 genes to examine the anti-proliferative activity of the herb Coptidis rhizoma and eight constituent molecules against eight human pancreatic cancer cell lines. We identified 27 genes showing strong correlation with the 50% inhibitory dose (ID50) of C. rhizoma after 72-h exposure. Hierarchical cluster analysis with correlation coefficients between expression levels of these 27 C. rhizoma-related genes and the ID50 of each constituent molecule classified these test molecules into two clusters, one consisting of C. rhizoma and berberine and the other consisting of the remaining seven molecules. Our results suggest that one molecule, berberine, can account for the majority of the anti-proliferative activity of C. rhizoma and that DNA microarray analyses can be used to improve our understanding of the actions of an intact herb.  相似文献   
150.
In agreement with Knudson's two-hit theory, recent findings indicate that the inactivation of tumor suppressor genes is not only mediated by the loss of function but also by the dominant-negative or gain-of-function activity. The former generally accompanies loss of a wild-type allele whereas in the latter a wild-type allele is retained. N-Ethyl-N-nitrosourea (ENU), which efficiently induces point mutations, reportedly leads to the development of tumors by activating ras oncogenes. Little is known about how ENU affects tumor suppressor genes and, therefore, we examined ENU-induced mutations of p53 and Ikaros in thymic lymphomas and compared these with mutations of Kras. In addition, loss of heterozygosity was examined for chromosome 11 to which both p53 and Ikaros were mapped. The frequency of point mutations in p53 and Ikaros was 30% (8/27) and 19% (5/27), respectively, comparable to that observed in Kras (33%: 9/27). In total, 14 of the 27 thymic lymphomas examined (52%) harbored mutations in at least one of these genes. One Ikaros mutation was located at the splice donor site, generating a novel splice isoform lacking zinc finger 3, Ik (F3del). Interestingly, 90% (10/11) of the tumors with point mutations retained wild-type alleles of p53 and Ikaros. Sequence analysis revealed that the most common nucleic acid substitutions were T>A (4/8) in p53, T>C (4/5) in Ikaros and G>A/T (8/9) in Kras, suggesting that the spectrum of mutations was gene dependent. These results suggest that point mutations in tumor suppressor genes without loss of the wild-type allele play an important role in ENU-induced lymphomagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号