全文获取类型
收费全文 | 1156篇 |
免费 | 56篇 |
专业分类
1212篇 |
出版年
2022年 | 2篇 |
2021年 | 8篇 |
2020年 | 8篇 |
2019年 | 8篇 |
2018年 | 12篇 |
2017年 | 14篇 |
2016年 | 23篇 |
2015年 | 27篇 |
2014年 | 40篇 |
2013年 | 85篇 |
2012年 | 65篇 |
2011年 | 67篇 |
2010年 | 49篇 |
2009年 | 49篇 |
2008年 | 67篇 |
2007年 | 70篇 |
2006年 | 53篇 |
2005年 | 82篇 |
2004年 | 80篇 |
2003年 | 85篇 |
2002年 | 78篇 |
2001年 | 9篇 |
2000年 | 10篇 |
1999年 | 18篇 |
1998年 | 19篇 |
1997年 | 17篇 |
1996年 | 15篇 |
1995年 | 6篇 |
1994年 | 7篇 |
1993年 | 11篇 |
1992年 | 11篇 |
1991年 | 12篇 |
1990年 | 13篇 |
1989年 | 8篇 |
1988年 | 8篇 |
1987年 | 9篇 |
1986年 | 3篇 |
1985年 | 6篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 5篇 |
1981年 | 8篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 4篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 5篇 |
1973年 | 8篇 |
1972年 | 3篇 |
排序方式: 共有1212条查询结果,搜索用时 31 毫秒
991.
Kawamoto T Abe Y Ito J Makino F Kojima Y Usui Y Ma J Morimoto S Yagita H Okumura K Takasaki Y Akiba H 《Arthritis research & therapy》2011,13(2):R47-12
Introduction
T cell immunoglobulin and mucin domain-2 (TIM-2) has been shown to regulate CD4 T cell activation. However, the role of TIM-2 in the autoimmune disease models has not been clarified yet. In this study, we investigated the effects of anti-TIM-2 monoclonal antibodies (mAbs) in collagen-induced arthritis (CIA) to determine whether TIM-2 contributes to the development of T helper (Th) 1 or Th17 cells and joint inflammation.Methods
DBA/1 mice were treated with anti-TIM-2 mAbs during the early or late phase of CIA. Type II collagen (CII)-specific CD4 T-cell proliferative response and cytokine production were assessed from lymph node cell culture. The serum levels of CII-specific antibody were measured by ELISA. The expression of TIM-2 on CD4 T cells or B cells was determined by flow cytometric analysis.Results
Administration of anti-TIM-2 mAbs in early phase, but not late phase, significantly exacerbated the development of CIA. Although anti-TIM-2 mAbs treatment did not affect the development of Th1 or Th17 cells in the draining lymph node, the serum levels of anti-CII antibodies were significantly increased in the anti-TIM-2-treated mice. TIM-2 expression was found on splenic B cells and further up-regulated by anti-immunoglobulin (Ig)M, anti-CD40, and interleukin(IL)-4 stimulation. In contrast, CD4 T cells did not express TIM-2 even when stimulated with both anti-CD3 and anti-CD28 mAbs. Interestingly, anti-TIM-2 mAbs enhanced proliferation and antibody production of activated B cells in vitro.Conclusions
TIM-2 signaling influences both proliferation and antibody production of B cells during the early phase of CIA, but not induction of Th1 or Th17 cells. 相似文献992.
Yoshihiko Nanasato Sayuri Namiki Masao Oshima Ryota Moriuchi Ken-ichi Konagaya Nobuyasu Seike Takashi Otani Yuji Nagata Masataka Tsuda Yutaka Tabei 《Plant cell reports》2016,35(9):1963-1974
Key message
γ-HCH was successfully degraded using LinA-expressed transgenic hairy root cultures of Cucurbita moschata . Fusing an endoplasmic reticulum-targeting signal peptide to LinA was essential for stable accumulation in the hairy roots.Abstract
The pesticide γ-hexachlorocyclohexane (γ-HCH) is a persistent organic pollutant (POP) that raises public health and environmental pollution concerns worldwide. Although several isolates of γ-HCH-degrading bacteria are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the bacterial survival rate. Cucurbita species incorporate significant amounts of POPs from soils compared with other plant species. Here, we describe a novel bioremediation strategy that combines the bacterial degradation of γ-HCH and the efficient uptake of γ-HCH by Cucurbita species. We produced transgenic hairy root cultures of Cucurbita moschata that expressed recombinant bacterial linA, isolated from the bacterium Sphingobium japonicum UT26. The LinA protein was accumulated stably in the hairy root cultures by fusing an endoplasmic reticulum (ER)-targeting signal peptide to LinA. Then, we demonstrated that the cultures degraded more than 90 % of γ-HCH (1 ppm) overnight and produced the γ-HCH metabolite 1,2,4-trichlorobenzene, indicating that LinA degraded γ-HCH. These results indicate that the gene linA has high potential for phytoremediation of environmental γ-HCH.993.
Hiroshi Tsujibo Katsushiro Miyamoto Toru Hasegawa Yoshihiko Inamori 《Journal of applied microbiology》1990,69(4):520-529
T sujibo , H., M iyamoto , K., H asegawa , T. & I namori , Y. 1990. Purification and characterization of two types of alkaline serine proteases produced by an alkalophilic actinomycete. Journal of Applied Bacteriology 69 , 520–529.
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21000 and 36000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10–12 (protease I) and pH 10.5 (protease II). The optimum temperature for the activity of protease I was 70°C and that for protease II was 60°C. Protease I was stable in the range of pH 4.0–8.0 up to 60°C and protease II was stable in the range of pH 6.0–12.0 up to 50°C. 相似文献
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21000 and 36000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10–12 (protease I) and pH 10.5 (protease II). The optimum temperature for the activity of protease I was 70°C and that for protease II was 60°C. Protease I was stable in the range of pH 4.0–8.0 up to 60°C and protease II was stable in the range of pH 6.0–12.0 up to 50°C. 相似文献
994.
Uehara Y Ito Y Taki K Nenoi M Ichinohe K Nakamura S Tanaka S Oghiso Y Tanaka K Matsumoto T Paunesku T Woloschak GE Ono T 《Radiation research》2010,174(5):611-617
Changes in gene expression profiles in mouse liver induced by long-term low-dose-rate γ irradiation were examined by microarray analysis. Three groups of male C57BL/6J mice were exposed to whole-body radiation at dose rates of 17-20 mGy/day, 0.86-1.0 mGy/day or 0.042-0.050 mGy/day for 401-485 days with cumulative doses of approximately 8 Gy, 0.4 Gy or 0.02 Gy, respectively. The gene expression levels in the livers of six animals from each exposure group were compared individually with that of pooled sham-irradiated animals. Some genes revealed a large variation in expression levels among individuals within each group, and the number of genes showing common changes in individuals from each group was limited: 20 and 11 genes showed more than 1.5-fold modulation with 17-20 mGy/day and 0.86-1.0 mGy/day, respectively. Three genes showed more than 1.5-fold modulation even at the lowest dose-rate of 0.04-0.05 mGy/day. Most of these genes were down-regulated. RT-PCR analysis confirmed the expression profiles of the majority of these genes. The results indicate that a few genes are modulated in response to very low-dose-rate irradiation. The functional analysis suggests that these genes may influence many processes, including obesity and tumorigenesis. 相似文献
995.
Rodent mandibular incisors have a unique anatomical structure that allows teeth to grow throughout the lifetime of the rodent. This report presents a novel transplantation technique for studying the apical bud differentiation of rodent mandibular incisors. Incisal apical end tissue with green fluorescent protein from transgenic mouse was transplanted to wild type mice, and the development of the transplanted cells were immunohistologically observed for 12 weeks after the transplantation. Results indicate that the green fluorescent apical end tissue replaced the original tissue, and cells from the apical bud differentiated and extended toward the incisal edge direction. The immunostaining with podoplanin also showed that the characteristics of the green fluorescent tissue were identical to those of the original. The green fluorescent cells were only found in the labial side of the incisor up to 4 weeks. After 12 weeks, however, they were also found in the lingual side. Here the green fluorescent cementocyte-like cells were only present in the cementum close to the dentin surface. This study suggests that some of the cells that form the cellular cementum come from the apical tissue including the apical bud in rodent incisors. 相似文献
996.
Takahiro Mori Yoshihiko Shimokawa Takashi Matsui Keishi Kinjo Ryohei Kato Hiroshi Noguchi Shigetoshi Sugio Hiroyuki Morita Ikuro Abe 《The Journal of biological chemistry》2013,288(40):28845-28858
Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56–60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the “single product” by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å3) is almost as large as that of M. sativa CHS (750 Å3), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å3) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases. 相似文献
997.
Xu W Mollapour M Prodromou C Wang S Scroggins BT Palchick Z Beebe K Siderius M Lee MJ Couvillon A Trepel JB Miyata Y Matts R Neckers L 《Molecular cell》2012,47(3):434-443
Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones. 相似文献
998.
Peritoneal exudate cells treated with calcitonin gene-related peptide suppress murine experimental autoimmune uveoretinitis via IL-10 总被引:1,自引:0,他引:1
Kezuka T Takeuchi M Keino H Usui Y Takeuchi A Yamakawa N Usui M 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(2):1454-1462
Immunization with retinal Ag induces experimental autoimmune uveoretinitis (EAU) in mice. We investigated the suppression of murine EAU by peritoneal exudate cells (PEC) cultured with calcitonin gene-related peptide (CGRP). PEC derived from mice were treated with CGRP and residues 1-20 of human interphotoreceptor retinoid-binding protein (hIRBP 1-20). The hIRBP 1-20-immunized mice were injected i.v. with PEC treated with CGRP and hIRBP 1-20. After immunization, Ag-specific delayed hypersensitivity (DH) was measured and EAU was assessed histopathologically. Both EAU- and Ag-specific DH were suppressed by injection of PEC treated with CGRP (100 ng/ml) and hIRBP 1-20. However, hIRBP 1-20-mediated EAU was not suppressed by injection of PEC treated with CGRP and BSA. Both EAU- and Ag-specific DH were not suppressed by injection of PEC treated with CGRP and hIRBP 1-20 into splenectomized mice. In mice adoptively transferred spleen cells from hIRBP 1-20-immunized mice, EAU was also suppressed by injection of CGRP-treated PEC. EAU was markedly inhibited in hIRBP 1-20-immunized mice adoptively transferred T cells obtained from mice injected with hIRBP 1-20-pulsed, CGRP-treated PEC. Furthermore, EAU- and Ag-specific DH were not suppressed by injection of PEC treated with CGRP and hIRBP 1-20 when the recipient mice were given anti-IL-10 Ab i.p., or when the PEC were derived from IL-10 knockout mice. The present results indicate that PEC treated with CGRP suppress murine EAU in an Ag-specific manner, even in the efferent phase, and IL-10 secreted from PEC might play an important role in the CGRP-mediated suppression of murine EAU. 相似文献
999.
Adachi O Hours RA Shinagawa E Akakabe Y Yakushi T Matsushita K 《Bioscience, biotechnology, and biochemistry》2011,75(9):1801-1806
In our previous study, a new microbial reaction yielding 4-keto-D-arabonate from 2,5-diketo-D-gluconate was identified with Gluconacetobacter liquefaciens RCTMR 10. It appeared that decarboxylation and dehydrogenation took place together in the reaction. To analyze the nature of the reaction, investigations were done with the membrane fraction of the organism, and 4-keto-D-arabinose was confirmed as the direct precursor of 4-keto-D-arabonate. Two novel membrane-bound enzymes, 2,5-diketo-D-gluconate decarboxylase and 4-keto-D-aldopentose 1-dehydrogenase, were involved in the reaction. Alternatively, D-arabonate was oxidized to 4-keto-D-arabonate by another membrane-bound enzyme, D-arabonate 4-dehydrogenase. More directly, D-arabinose oxidation was examined with growing cells and with the membrane fraction of G. suboxydans IFO 12528. 4-Keto-D-arabinose, the same intermediate as that from 2,5-diketo-D-gluconate, was detected, and it was oxidized to 4-keto-D-arabonate. Likewise, D-ribose was oxidized to 4-keto-D-ribose and then it was oxidized to 4-keto-D-ribonate. In addition to 4-keto-D-aldopentose 1-dehydrogenase, the presence of a novel membrane-bound enzyme, D-aldopentose 4-dehydrogenase, was confirmed in the membrane fraction. The formation of 4-keto-D-aldopentoses and 4-keto-D-pentonates (4-pentulosonates) was finally confirmed as reaction products of four different novel membrane-bound enzymes. 相似文献
1000.
Yuka Torii Yoshihiko Kawano Hajime Sato Kazunori Sasaki Tamaki Fujimori Jun-ichi Kawada Osamu Takikawa Chai K. Lim Gilles J. Guillemin Yoshiaki Ohashi Yoshinori Ito 《Metabolomics : Official journal of the Metabolomic Society》2016,12(5):84