首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   32篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   15篇
  2014年   11篇
  2013年   30篇
  2012年   21篇
  2011年   30篇
  2010年   10篇
  2009年   29篇
  2008年   27篇
  2007年   34篇
  2006年   44篇
  2005年   34篇
  2004年   45篇
  2003年   28篇
  2002年   42篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有477条查询结果,搜索用时 281 毫秒
81.
Magnetic resonance imaging (MRI) and boron-neutron capture therapy (BNCT) are quite attractive techniques for diagnosis and treatment of cancer, respectively. In order to progress the study on both MRI and BNCT, the novel compounds containing 19F and 10B atoms in a single molecule were designed and synthesized. In the present paper, the syntheses and the internalization rates into tumor cells of these compounds are elucidated.  相似文献   
82.

Background

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)4-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.

Methodology/Principal Findings

PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity.

Conclusions/Significance

Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.  相似文献   
83.
Small interfering RNA (siRNA)-mediated silencing of gene expression is rapidly becoming a powerful tool for molecular therapy. However, the rapid degradation of siRNAs and their limited duration of activity require efficient delivery methods. Atelocollagen (ATCOL)-mediated administration of siRNAs is a promising approach to disease treatment, including muscular atrophy. Herein, we report that ATCOL-mediated systemic administration of a myostatin-targeting siRNA into a caveolin-3-deficient mouse model of limb-girdle muscular dystrophy 1C (LGMD1C) induced a marked increase in muscle mass and a significant recovery of contractile force. These results provide evidence that ATCOL-mediated systemic administration of siRNAs may be a powerful therapeutic tool for disease treatment, including muscular atrophy.  相似文献   
84.
85.
Leukotriene (LT) C(4) and its metabolites, LTD(4) and LTE(4), are involved in the pathobiology of bronchial asthma. LTC(4) synthase is the nuclear membrane-embedded enzyme responsible for LTC(4) biosynthesis, catalyzing the conjugation of two substrates that have considerably different water solubility; that amphipathic LTA(4) as a derivative of arachidonic acid and a water-soluble glutathione (GSH). A previous crystal structure revealed important details of GSH binding and implied a GSH activating function for Arg-104. In addition, Arg-31 was also proposed to participate in the catalysis based on the putative LTA(4) binding model. In this study enzymatic assay with mutant enzymes demonstrates that Arg-104 is required for the binding and activation of GSH and that Arg-31 is needed for catalysis probably by activating the epoxide group of LTA(4).  相似文献   
86.
87.
88.
89.
Chino Y  Fujimura M  Kitahama K  Fujimiya M 《Peptides》2002,23(12):2245-2250
Since very few previous studies have carried out the quantitative analysis for the colocalization of nitric oxide (NO) and vasoactive intestinal peptide (VIP) in the submucous neurons in the rat digestive tract, we applied in vivo treatment of colchicine to enhance the immunoreactivity and examined the colocalization of NO synthase (nNOS) and VIP in neurons of the submucous plexus throughout the rat digestive tract. The density of nNOS-containing neurons in the submucous plexus in the stomach corpus (103±25 cells/cm2, n=3) and that in the antrum (157±9 cells/cm2, n=3) were significantly lower than those in small and large intestine. However no difference was detected in the cell density among duodenum (1967±188 cells/cm2, n=3), jejunum (2640±140 cells/cm2, n=3), ileum (2070±42 cells/cm2, n=3), proximal colon (2243±138 cells/cm2, n=3) and distal colon (2633±376 cells/cm2, n=3). The proportion of nNOS-immunoreactive (IR), nNOS/VIP-IR and VIP-IR neurons to the total number of submucous neurons was examined. nNOS/VIP-IR neurons comprised 45–55% of total number of submucous neurons from the duodenum to the proximal colon, however those comprised 66.4±5.1% in the distal colon. The results showed that the dense distribution of nNOS-containing neurons was found in the submucous plexus throughout the small and large intestine, and large population of submucous neurons co-stored nNOS and VIP.  相似文献   
90.
Myostatin, a member of the transforming growth factor (TGF)-β superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-β superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号