首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   724篇
  免费   53篇
  777篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   17篇
  2014年   21篇
  2013年   61篇
  2012年   49篇
  2011年   44篇
  2010年   27篇
  2009年   16篇
  2008年   40篇
  2007年   52篇
  2006年   37篇
  2005年   58篇
  2004年   44篇
  2003年   59篇
  2002年   50篇
  2001年   3篇
  2000年   4篇
  1999年   9篇
  1998年   12篇
  1997年   11篇
  1996年   2篇
  1995年   7篇
  1994年   9篇
  1993年   14篇
  1992年   12篇
  1991年   8篇
  1990年   5篇
  1989年   13篇
  1988年   4篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   8篇
  1977年   5篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1966年   1篇
  1962年   1篇
排序方式: 共有777条查询结果,搜索用时 0 毫秒
101.
102.
Hepatitis C virus (HCV) is the major causative agent of blood-borne non-A, non-B hepatitis. Although a strong humoral response is detectable within a few weeks of primary infection and during viral persistence, the role played by antibodies against HCV envelope glycoproteins in controlling viral replication is still unclear. We describe how human monoclonal anti-HCV E2 antibody fragments isolated from a chronically HCV-infected patient differ sharply in their abilities to neutralize infection of HepG2 cells by a vesicular stomatitis virus pseudotype bearing HCV envelope glycoproteins. Two clones were able to neutralize the pseudotype virus at a concentration of 10 micro g/ml, while three other clones completely lacked this activity. These data can explain the lack of protection and the possibility of reinfection that occur even in the presence of a strong antiviral antibody response.  相似文献   
103.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
104.
We have studied on allelopathy of plants and developed methods to identify the effective substances in root exudates, leaf leacheate, and volatile chemicals emitted from plants. We found traditional cover plants that show allelopathic activity are useful for weed control. It could eliminate the use of synthetic chemicals for this purpose. Allelopathy is a natural power of plants to protect themselves by producing natural organic chemicals. Some endemic plants in Asia, already known by farmers in the region, as either cover crops used in intercropping, hedgerow, or agroforestry, were found to possess strong allelopathic abilities. Our group identified several allelochemicals from these plants. These allelopathic cover crops, mostly leguminous plants, provide protein rich food, and grow easily without artificial fertilizers, herbicides, insecticides and fungicides. In this regards, these allelopathic cover crops could save food shortage in rural area, and are useful for environmental conservation. Screenings of allelopathic plants by specific bioassays and field tests have been conducted. Hairy vetch (Vicia villosa) and Velvet bean (Mucuna pruriens) are two promising species for the practical application of allelopathy. An amino acid, L-DOPA, unusual in plants, plays an important role as allelochemical in Velvet bean (Mucuna pruriens). Hairy vetch is the most promising cover plant for the weed control in orchard, vegetable and rice production and even for landscape amendment in abandoned field in Japan. We have isolated "cyanamide", a well known nitrogen fertilizer, from Hairy vetch. This is the first finding of naturally produced cyanamide in the world.  相似文献   
105.
106.
Hepatitis C virus (HCV) core protein has shown to be localized in the detergent-resistant membrane (DRM), which is distinct from the classical raft fraction including caveolin, although the biological significance of the DRM localization of the core protein has not been determined. The HCV core protein is cleaved off from a precursor polyprotein at the lumen side of Ala(191) by signal peptidase and is then further processed by signal peptide peptidase (SPP) within the transmembrane region. In this study, we examined the role of SPP in the localization of the HCV core protein in the DRM and in viral propagation. The C terminus of the HCV core protein cleaved by SPP in 293T cells was identified as Phe(177) by mass spectrometry. Mutations introduced into two residues (Ile(176) and Phe(177)) upstream of the cleavage site of the core protein abrogated processing by SPP and localization in the DRM fraction. Expression of a dominant-negative SPP or treatment with an SPP inhibitor, L685,458, resulted in reductions in the levels of processed core protein localized in the DRM fraction. The production of HCV RNA in cells persistently infected with strain JFH-1 was impaired by treatment with the SPP inhibitor. Furthermore, mutant JFH-1 viruses bearing SPP-resistant mutations in the core protein failed to propagate in a permissive cell line. These results suggest that intramembrane processing of HCV core protein by SPP is required for the localization of the HCV core protein in the DRM and for viral propagation.  相似文献   
107.
Thioredoxin, an antioxidant protein, is a promising molecule for development of functional foods because it protects the gastric mucosa and reduces the allergenicity of allergens. To establish a method for obtaining an ample amount of yeast thioredoxin, we found here that thioredoxin is released from Saccharomyces cerevisiae by treatment with 20% ethanol. We also found that Japanese sake contains a considerable amount of thioredoxin.  相似文献   
108.
Cell migration is essential for various physiological and pathological processes. Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. Although RhoA participates in a front-rear polarization in migrating cells, little is known about the functional interaction between RhoA and lipid turnover. We find here that src-homology 2-containing inositol-5-phosphatase 2 (SHIP2) interacts with RhoA in a GTP-dependent manner. The association between SHIP2 and RhoA is observed in spreading and migrating U251 glioma cells. The depletion of SHIP2 attenuates cell polarization and migration, which is rescued by wild-type SHIP2 but not by a mutant defective in RhoA binding. In addition, the depletion of SHIP2 impairs the proper localization of phosphatidylinositol 3,4,5-trisphosphate, which is not restored by a mutant defective in RhoA binding. These results suggest that RhoA associates with SHIP2 to regulate cell polarization and migration.  相似文献   
109.
Semaphorins provide crucial attractive and repulsive cues involved in axon guidance during neural development. Out of them, Semaphorin 4D (Sema4D) is enriched in the nervous and immune tissues, and acts as proliferative and survival factors of peripheral lymphocytes in the immune system, but is poorly understood in the nervous system. By using PC12 cells which are well known to differentiate into neural cells in response to nerve growth factor (NGF), we found that soluble forms of Sema4D had neurotrophic effects which were inhibited by neutralizing antibodies to Sema4D. Sema4D strikingly potentiated neurite outgrowth in the presence of 50 ng/ml NGF and increased sensitivity to NGF. Cells responded to very low concentrations of NGF in the presence of 1 nM Sema4D. Activation of following signal proteins, protein kinase C (PKC), L-type of voltage-dependent Ca(2+) channel, and phosphatidylinositol (PI) 3-kinase mediated neurotrophic neurite-outgrowth action of Sema4D. These findings suggest a new function of Sema4D as a neurotrophic signal in PC12 cells.  相似文献   
110.
Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号