首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   903篇
  免费   48篇
  国内免费   4篇
  955篇
  2022年   7篇
  2021年   6篇
  2020年   2篇
  2019年   10篇
  2018年   10篇
  2017年   17篇
  2016年   18篇
  2015年   19篇
  2014年   27篇
  2013年   62篇
  2012年   44篇
  2011年   78篇
  2010年   37篇
  2009年   37篇
  2008年   66篇
  2007年   71篇
  2006年   52篇
  2005年   68篇
  2004年   48篇
  2003年   52篇
  2002年   48篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   16篇
  1997年   16篇
  1996年   12篇
  1995年   11篇
  1994年   15篇
  1993年   11篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   11篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有955条查询结果,搜索用时 0 毫秒
41.
A novel agent, ONO-2506 [(R)-(-)-2-propyloctanoic acid, ONO Pharmaceutical Co. Ltd.] was previously shown to mitigate delayed infarct expansion through inhibition of the enhanced production of S-100beta, while inducing a prompt symptomatic improvement that attained a significant level as early as 24h after drug administration. To elucidate the mechanism underlying the prompt symptomatic improvement, the present study aimed to examine whether ONO-2506 modulates the level of extracellular glutamate ([Glu]e) in the rat subjected to transient middle cerebral artery occlusion (tMCAO). In this model, it had been shown that ONO-2506 reduces the infarct volume, improves the neurological deficits, and enhances the mRNA expression of glial glutamate transporters (GLT-1 and GLAST). The [Glu]e levels in the ischemic cortices were continuously measured using intracerebral microdialysis. The alterations in the [Glu]e levels in the sham-operated and tMCAO-operated groups with or without drug administration were compared. In the tMCAO groups, the [Glu]e level increased during tMCAO to a similar extent, returned to normal on reperfusion, and increased again around 5h. In the saline-treated group, however, the [Glu]e level further increased from 15 h on to reach about 280% of the normal level at 24h. This secondary increase in the [Glu]e level in the late phase of reperfusion was prevented by ONO-2506. The intracerebral infusion of glutamate transporter inhibitor, l-trans-pyrrolidine-2,4-dicarboxylic acid, at 24h after tMCAO induced an increase in the [Glu]e level, which was marked in both the sham-operated and ONO-2506-treated groups, but much less pronounced in the saline-treated group. The above results suggest that functional modulation of activated astrocytes by pharmacological agents like ONO-2506 may inhibit the secondary rise of [Glu]e level in the late phase of reperfusion, leading to amelioration of delayed infarct expansion and neurological deficits.  相似文献   
42.
Human alpha-1,3-fucosyltansferase (FucT) encoded by the FUT6 gene was displayed at the cell surface of yeast cells engineered using the yeast cell wall protein Pir1 or Pir2, and the FucT activity was detected at the surface of cells producing the Pir1-HA-FUT6 or Pir2-FLAG-FUT6 fusion proteins. To obtain higher activity, we engineered the host yeast cells in which endogenous PIR genes of the PIR1-4 gene family were disrupted. Among the disruptants, the pir1Delta pir2Delta pir3Delta strain with the PIR1-HA-FUT6 fusion gene showed the highest FucT activity, which was about three-fold higher than that of the wild-type strain. Furthermore, the co-expression of both the Pir1-HA-FUT6 and the Pir2-FLAG-FUT6 fusions showed an approximately 1.5-fold higher activity than that in the cell wall displaying Pir1-HA-FUT6 alone. The present method was thus effective for producing yeast cells that can easily synthesize various oligosaccharides, such as Le(x) and sLe(x), using Pir-glycosyltransferase fusions in combination with the deletion of endogenous PIR genes.  相似文献   
43.
An extracellular polysaccharide, AC-1, produced by Acetobacter polysaccharogenes is composed of beta-(1,4)glucan with branches of glucosyl residues. We found that AC-1 showed a strong activity to induce production of interleukin-12 P40 and tumor necrosis factor-alpha by macrophage cell lines in vitro. Cellulase treatment completely abolished the activity of AC-1 to induce tumor necrosis factor-alpha production by macrophages, whereas treatment of AC-1 with polymyxin B or proteinase did not affect the activity. Results of experiments using toll-like receptor (TLR) 4-deficient mice and TLR4-transfected human cell line indicated that TLR4 is involved in pattern recognition of AC-1. In vivo administration of AC-1 significantly reduced the serum levels of ovalbumin (OVA)-specific IgE and interleukin-4 production by T cells in response to OVA in mice immunized with OVA. AC-1, a soluble branched beta-(1,4)glucan may be useful in prevention and treatment of allergic disorders With IgE production.  相似文献   
44.
Glycosylphosphatidylinositol (GPI) is a conserved post-translational modification to anchor cell surface proteins to plasma membrane in all eukaryotes. In yeast, GPI mediates cross-linking of cell wall mannoproteins to beta1,6-glucan. We reported previously that the GWT1 gene product is a target of the novel anti-fungal compound, 1-[4-butylbenzyl]isoquinoline, that inhibits cell wall localization of GPI-anchored mannoproteins in Saccharomyces cerevisiae (Tsukahara, K., Hata, K., Sagane, K., Watanabe, N., Kuromitsu, J., Kai, J., Tsuchiya, M., Ohba, F., Jigami, Y., Yoshimatsu, K., and Nagasu, T. (2003) Mol. Microbiol. 48, 1029-1042). In the present study, to analyze the function of the Gwt1 protein, we isolated temperature-sensitive gwt1 mutants. The gwt1 cells were normal in transport of invertase and carboxypeptidase Y but were delayed in transport of GPI-anchored protein, Gas1p, and were defective in its maturation from the endoplasmic reticulum to the Golgi. The incorporation of inositol into GPI-anchored proteins was reduced in gwt1 mutant, indicating involvement of GWT1 in GPI biosynthesis. We analyzed the early steps of GPI biosynthesis in vitro by using membranes prepared from gwt1 and Deltagwt1 cells. The synthetic activity of GlcN-(acyl)PI from GlcN-PI was defective in these cells, whereas Deltagwt1 cells harboring GWT1 gene restored the activity, indicating that GWT1 is required for acylation of inositol during the GPI synthetic pathway. We further cloned GWT1 homologues in other yeasts, Cryptococcus neoformans and Schizosaccharomyces pombe, and confirmed that the specificity of acyl-CoA in inositol acylation, as reported in studies of endogenous membranes (Franzot, S. P., and Doering, T. L. (1999) Biochem. J. 340, 25-32), is due to the properties of Gwt1p itself and not to other membrane components.  相似文献   
45.
It is well recognized that the Shiga-like toxins (Stxs) preferentially bind to Gb3 glycolipids and the cholera toxin (CT) and heat-labile enterotoxin (LTp) bind to GM1 gangliosides. After binding to the cell surface, A-B bacterial enterotoxins have to be internalized by endocytosis. The transport of the toxin-glycolipid complex has been documented in several manners but the actual mechanisms are yet to be clarified. We applied a heterobifunctional cross-linker, sulfosuccinimidyl-2-(p-azidosalicylamido)-1,3'-dithiopropionate (SASD), to detect the membrane proteins involved in the binding and the transport of A-B bacterial enterotoxins in cultured cells. Both Stx1 and Stx2 bound to the detergent-insoluble microdomain (DIM) of Vero cells and Caco-2 cells, which were susceptible to the toxin, but neither was bound to insusceptible CHO-K1 cells. Both CT and LTp bound to the DIM of Vero cells, Caco-2 cells, and CHO-K1 cells. In a cross-linking experiment, Stx1 cross-linked only with a 27-kDa molecule, while Stx2, which was more potently toxic than Stx1, cross-linked with 27- and 40-kDa molecules of Vero cells as well as of Caco-2 cells; moreover, no molecules were cross-linked with the insusceptible CHO-K1 cells. LTp was cross-linked only to the 27-kDa molecule of these three cell types but the CT, which was more toxic than LTp, was also cross-linked with 27- and 40-kDa molecules of Vero cells, Caco-2 cells, and CHO-K1 cells. The 27- and the 40-kDa molecules might play a role in the endocytosis and retrograde transport of A-B bacterial enterotoxins.  相似文献   
46.
The Michael type reaction of chitosan with ethyl acrylate has been investigated. Although this reaction was quite slow in the case of chitosan, the reiteration of the reaction was an effective means for increasing the degree of substitution (DS) of ethyl ester. The N-carboxyethylchitosan ethyl ester as an intermediate was successfully substituted with various hydrophilic amines, although the simultaneous hydrolysis of the ester to carboxylic acid also occurred. Water-soluble chitosan derivatives were obtained by substitution with hydroxyalkylamines and diamines.  相似文献   
47.
The purpose of this study was to demonstrate the involvement of Ca(2+) influx through voltage-independent Ca(2+) channels (VICCs) in endothelin-1 (ET-1)-induced transactivation of epidermal growth factor receptor protein tyrosine kinase (EGFR PTK) using the Ca(2+) channel blockers LOE-908 and SK&F-96365 in rabbit internal carotid artery vascular smooth muscle cells. ET-1-induced EGFR PTK transactivation was completely inhibited by AG-1478, which is a specific inhibitor of EGFR PTK. In the absence of extracellular Ca(2+), the magnitude of EGFR PTK transactivation was near the basal level. Based on sensitivity to nifedipine, which is a specific blocker of voltage-operated Ca(2+) channels (VOCCs), VOCCs have minor roles in EGFR PTK transactivation. In contrast, Ca(2+) influx through VICCs plays an important role in EGFR PTK transactivation. Moreover, based on the sensitivity of VICCs to SK&F-96365 and LOE-908, VICCs were shown to consist of two types of Ca(2+)-permeable nonselective cation channels (NSCCs), which are designated NSCC-1 and NSCC-2, and a store-operated Ca(2+) channel. In summary, Ca(2+) influx through VICCs plays an essential role in ET-1-induced EGFR PTK transactivation in rabbit internal carotid artery vascular smooth muscle cells.  相似文献   
48.
Chitinase C (ChiC) is the first bacterial family 19 chitinase discovered in Streptomyces griseus HUT6037. While it shares significant similarity with the plant family 19 chitinases in the catalytic domain, its N-terminal chitin-binding domain (ChBD(ChiC)) differs from those of the plant enzymes. ChBD(ChiC) and the catalytic domain (CatD(ChiC)), as well as intact ChiC, were separately produced in E. coli and purified to homogeneity. Binding experiments and isothermal titration calorimetry assays demonstrated that ChBD(ChiC) binds to insoluble chitin, soluble chitin, cellulose, and N-acetylchitohexaose (roughly in that order). A deletion of ChBD(ChiC) resulted in moderate (about 50%) reduction of the hydrolyzing activity toward insoluble chitin substrates, but most (about 90%) of the antifungal activity against Trichoderma reesei was abolished by this deletion. Thus, this domain appears to contribute more importantly to antifungal properties than to catalytic activities. ChBD(ChiC) itself did not have antifungal activity or a synergistic effect on the antifungal activity of CatD(ChiC) in trans.  相似文献   
49.
This study was performed to determine the structure-activity relationships (SAR) of L-cysteine based N-type calcium channel blockers. Basic nitrogen was introduced into the C-terminal lipophilic moiety of L-cysteine with a view toward improvement of its physicochemical properties. L-Cysteine derivative 9 was found to be a potent and selective N-type calcium channel blocker with IC(50) of 0.33 microM in calcium influx assay using IMR-32 cells and was 15-fold selective for N-type calcium channels over L-type channels. Compound 9 showed improved oral analgesic efficacy in the rat formalin induced pain model and the rat chronic constriction injury (CCI) model, which is one of the most reliable models of chronic neuropathic pain, without any significant effect on blood pressure or neurological behavior.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号