首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2685篇
  免费   147篇
  国内免费   10篇
  2022年   15篇
  2021年   24篇
  2020年   10篇
  2019年   19篇
  2018年   17篇
  2017年   29篇
  2016年   46篇
  2015年   52篇
  2014年   59篇
  2013年   155篇
  2012年   103篇
  2011年   144篇
  2010年   74篇
  2009年   87篇
  2008年   139篇
  2007年   145篇
  2006年   121篇
  2005年   152篇
  2004年   123篇
  2003年   137篇
  2002年   126篇
  2001年   102篇
  2000年   81篇
  1999年   87篇
  1998年   32篇
  1997年   37篇
  1996年   24篇
  1995年   25篇
  1994年   29篇
  1993年   32篇
  1992年   47篇
  1991年   45篇
  1990年   52篇
  1989年   51篇
  1988年   48篇
  1987年   37篇
  1986年   47篇
  1985年   39篇
  1984年   24篇
  1983年   33篇
  1982年   15篇
  1981年   22篇
  1980年   19篇
  1979年   24篇
  1978年   15篇
  1977年   13篇
  1976年   9篇
  1974年   11篇
  1973年   9篇
  1966年   7篇
排序方式: 共有2842条查询结果,搜索用时 15 毫秒
141.
A cDNA encoding farnesyl pyrophosphate synthase of Babesia bovis (BbFPPS) has been isolated, cloned and characterized as molecular drug target. Sequence analysis revealed that BbFPPS contains an open reading frame of 1011 bp with predicted 336 amino acids and molecular mass of 38 kDa. Antiserum raised in mice against recombinant BbFPPS expressed in Escherichia coli specifically reacted with native protein of B. bovis parasites by Western blot analysis and indirect immunofluorescent test. Enzymatic assay using recombinant BbFPPS revealed that the Km value of the enzyme for isopentenyl pyrophosphate and dimethylallyl pyrophosphate was 2.494 ± 1.536 μM. Risedronate inhibited the activity of BbFPPS yielding IC50 value of 8.4 ± 1.2 nM. Furthermore, the in vitro growth of B. bovis was significantly inhibited in the presence of a micromolar concentration of risedronate (IC50 = 4.02 ± 0.91 μM). No regrowth of B. bovis was observed at 10 μM of risedronate in the subsequent viability test. These results demonstrate that BbFPPS is the molecular target of risedronate, which could inhibit the in vitro growth of B. bovis.  相似文献   
142.
Bmi1 is overexpressed in a variety of human cancers including gastrointestinal cancer. The high expression level of Bmi1 protein is associated with poor prognosis of gastrointestinal cancer patients. On the other hand, tumor-associated macrophages (TAMs) contribute to tumor growth, invasion, and metastasis by producing various mediators in the tumor microenvironment. The aim of this study was to investigate TAM-mediated regulation of Bmi1 expression in gastrointestinal cancer. The relationship between TAMs and Bmi1 expression was analyzed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), and results showed a positive correlation with tumor-infiltrating macrophages (CD68 and CD163) and Bmi1 expression in cancer cells. Co-culture with TAMs triggered Bmi1 expression in cancer cell lines and enhanced sphere formation ability. miRNA microarray analysis of a gastric cancer cell line co-cultured with macrophages was conducted, and using in silico methods to analyze the results, we identified miR-30e* as a potential regulator of Bmi1 expression. Luciferase assays using miR-30e* mimic revealed that Bmi1 was a direct target for miR-30e* by interactions with the putative miR-30e* binding sites in the Bmi1 3′ untranslated region. qRT-PCR analysis of resected cancer specimens showed that miR-30e* expression was downregulated in tumor regions compared with non-tumor regions, and Bmi1 expression was inversely correlated with miR-30e* expression in gastric cancer tissues, but not in colon cancer tissues. Our findings suggest that TAMs may cause increased Bmi1 expression through miR-30e* suppression, leading to tumor progression. The suppression of Bmi1 expression mediated by TAMs may thus represent a possible strategy as the treatment of gastrointestinal cancer.  相似文献   
143.
MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition.  相似文献   
144.

Background and Purpose

The most common strategy for treating patients with acute ischemic stroke is thrombolytic therapy, though only a few patients receive benefits because of the narrow time window. Inflammation occurring in the central nervous system (CNS) in association with ischemia is caused by immune cells including monocytes and involved in lesion expansion. If the specific roles of monocyte subsets in stroke can be revealed, they may become an effective target for new treatment strategies.

Methods

We performed immunological examinations of 36 consecutive ischemic stroke patients within 2 days of onset and compared the results with 24 age-matched patients with degenerative disorders. The stroke patients were repeatedly tested for the proportions of monocyte subsets in blood, and serum levels of pro- and anti-inflammatory cytokines immediately after admission, on days 3-7 and 12-16 after stroke onset, and on the day of discharge. In addition, immunological measurements were analyzed for relationships to stroke subtypes and complications, including progressive infarction (PI) and stroke-associated infection (SAI).

Results

Monocyte count was significantly increased from 0–16 days after stroke as compared to the controls (p<0.05). CD14highCD16- classical and CD14highCD16+ intermediate monocytes were significantly increased from 0-7 and 3-16 days after stroke, respectively (p<0.05), whereas CD14 dimCD16high non-classical monocytes were decreased from 0–7 days (p<0.05). Cardioembolic infarction was associated with a persistent increase in intermediate monocytes. Furthermore, intermediate monocytes were significantly increased in patients with PI (p<0.05), while non-classical monocytes were decreased in those with SAI (p<0.05). IL-17A levels were positively correlated with monocyte count (r=0.485, p=0.012) as well as the percentage of non-classical monocytes (r=0.423, p=0.028), and negatively with that of classical monocytes (r=-0.51, p=0.007) during days 12-16.

Conclusions

Our findings suggest that CD14highCD16+ intermediate monocytes have a role in CNS tissue damage during acute and subacute phases in ischemic stroke especially in relation to cardioembolism.  相似文献   
145.
Energy-conversion systems mediated by bacterial metabolism have recently attracted much attention, and therefore, demands for tuning of bacterial metabolism are increasing. It is widely recognized that intracellular redox atmosphere which is generally tuned by dissolved oxygen concentration or by appropriate selection of an electron acceptor for respiration is one of the important factors determining the bacterial metabolism. In general, electrochemical approaches are valuable for regulation of redox-active objects. However, the intracellular redox conditions are extremely difficult to control electrochemically because of the presence of insulative phospholipid bilayer membranes. In the present work, the limitation can be overcome by use of the bacterial genus Shewanella , which consists of species that are able to respire via cytochromes abundantly expressed in their outer-membrane with solid-state electron acceptors, including anodes. The electrochemical characterization and the gene expression analysis revealed that the activity of tricarboxylic acid (TCA) cycle in Shewanella cells can be reversibly gated simply by changing the anode potential. Importantly, our present results for Shewanella cells cultured in an electrochemical system under poised potential conditions showed the opposite relationship between the current and electron acceptor energy level, and indicate that this unique behavior originates from deactivation of the TCA cycle in the (over-)oxidative region. Our result obtained in this study is the first demonstration of the electrochemical gating of TCA cycle of living cells. And we believe that our findings will contribute to a deeper understanding of redox-dependent regulation systems in living cells, in which the intracellular redox atmosphere is a critical factor determining the regulation of various metabolic and genetic processes.  相似文献   
146.
Abstract

We have performed molecular dynamics simulations for liquid n-butane in order to understand liquid structures in terms of both inter- and intra-molecular interactions. Each n-butane molecule consists of four sites interacting with LJ potential and only a dihedral angle is taken into account as the internal degree of freedom. The population of gauche conformations with respect to the ideal gas state is found to increase in the liquid state. To investigate how the intermolecular interaction affects the dihedral angle distribution, we also adopt the repulsive LJ potential (RLJ) model. It is found that the nearest neighbor packing of the methyl and/or methylene groups can be approximately represented by using only the repulsive interaction. From the dihedral angle distribution, however, the rate of the shift of RLJ model to gauche is larger than that of LJ model and the attractive force also plays a significant role in the conformational equilibrium.  相似文献   
147.
Abstract

The Gibbs ensemble Monte Carlo simulation has been used to calculate vapour-liquid equilibria of a Lennard-Jones (LJ) binary mixture. The mixture studied is the LB-2-1 model which has been used in our previous calculations on PVT relation and density-dependent local composition. The P-x-y relation has been established at two different temperatures and used to determine vapour-liquid coexistence region in the PVTx space.  相似文献   
148.
Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP (163PYAYIREG170), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to β1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.  相似文献   
149.
NO 3 ? is a major nitrogen source for plant nutrition, and plant cells store NO 3 ? in their vacuoles. Here, we report that a unique compost made from marine animal resources by thermophiles represses NO 3 ? accumulation in plants. A decrease in the leaf NO 3 ? content occurred in parallel with a decrease in the soil NO 3 ? level, and the degree of the soil NO 3 ? decrease was proportional to the compost concentration in the soil. The compost-induced reduction of the soil NO 3 ? level was blocked by incubation with chloramphenicol, indicating that the soil NO 3 ? was reduced by chloramphenicol-sensitive microbes. The compost-induced denitrification activity was assessed by the acetylene block method. To eliminate denitrification by the soil bacterial habitants, soil was sterilized with γ irradiation and then compost was amended. After the 24-h incubation, the N2O level in the compost soil with presence of acetylene was approximately fourfold higher than that in the compost soil with absence of acetylene. These results indicate that the low NO 3 ? levels that are often found in the leaves of organic vegetables can be explained by compost-mediated denitrification in the soil.  相似文献   
150.
Identification and molecular characterization of Babesia gibsoni proteins with potential antigenic properties are crucial for the development and validation of the serodiagnostic method. In this study, we isolated a cDNA clone encoding a novel B. gibsoni 76-kDa protein by immunoscreening of the parasite cDNA library. Computer analysis revealed that the protein presents a glutamic acid-rich region in the C-terminal. Therefore, the protein was designated as B. gibsoni glutamic acid-rich protein (BgGARP). A BLASTp analysis of a translated BgGARP polypeptide demonstrated that the peptide shared a significant homology with a 200-kDa protein of Babesia bigemina and Babesia bovis. A truncated BgGARP cDNA (BgGARPt) encoding a predicted 13-kDa peptide was expressed in Escherichia coli (E. coli), and mouse antisera against the recombinant protein were used to characterize a corresponding native protein. The antiserum against recombinant BgGARPt (rBgGARPt) recognized a 140-kDa protein in the lysate of infected erythrocytes, which was detectable in the cytoplasm of the parasites by confocal microscopic observation. In addition, the specificity and sensitivity of enzyme-linked immunosorbent assay (ELISA) with rBgGARPt were evaluated using B. gibsoni-infected dog sera and specific pathogen-free (SPF) dog sera. Moreover, 107 serum samples from dogs clinically diagnosed with babesiosis were examined using ELISA with rBgGARPt. The results showed that 86 (80.4%) samples were positive by rBgGARPt-ELISA, which was comparable to IFAT and PCR as reference test. Taken together, these results demonstrate that BgGARP is a suitable serodiagnostic antigen for detecting antibodies against B. gibsoni in dogs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号