首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   46篇
  国内免费   1篇
  719篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   8篇
  2015年   17篇
  2014年   26篇
  2013年   43篇
  2012年   40篇
  2011年   31篇
  2010年   24篇
  2009年   12篇
  2008年   44篇
  2007年   41篇
  2006年   40篇
  2005年   34篇
  2004年   46篇
  2003年   37篇
  2002年   43篇
  2001年   19篇
  2000年   9篇
  1999年   19篇
  1998年   13篇
  1997年   9篇
  1996年   6篇
  1995年   9篇
  1994年   10篇
  1993年   4篇
  1992年   18篇
  1991年   12篇
  1990年   7篇
  1989年   13篇
  1988年   8篇
  1987年   12篇
  1986年   12篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   9篇
  1980年   5篇
  1979年   2篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有719条查询结果,搜索用时 15 毫秒
61.
62.
Microglia have been attracting much attention because of their fundamental importance in both the mature brain and the developing brain. Though important roles of microglia in the developing cerebral cortex of mice have been uncovered, their distribution and roles in the developing cerebral cortex in gyrencephalic higher mammals have remained elusive. Here we examined the distribution and morphology of microglia in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that a number of microglia were accumulated in the germinal zones (GZs), especially in the outer subventricular zone (OSVZ), which is a GZ found in higher mammals. Furthermore, we uncovered that microglia extended their processes tangentially along inner fiber layer (IFL)-like fibers in the developing ferret cortex. The OSVZ and the IFL are the prominent features of the cerebral cortex of higher mammals. Our findings indicate that microglia may play important roles in the OSVZ and the IFL in the developing cerebral cortex of higher mammals.  相似文献   
63.
Saccharomyces cerevisiae is a multifunctional molecular switch involved in establishment of cell morphogenesis. We systematically characterized isolated temperature-sensitive mutations in the RHO1 gene and identified two groups of rho1 mutations (rho1A and rho1B) possessing distinct functional defects. Biochemical and cytological analyses demonstrated that mutant cells of the rho1A and rho1B groups have defects in activation of the Rho1p effectors Pkc1p kinase and 1,3-beta-glucan synthase, respectively. Heteroallelic diploid strains with rho1A and rho1B mutations were able to grow even at the restrictive temperature of the corresponding homoallelic diploid strains, showing intragenic complementation. The ability to activate both of the essential Rho1p effector proteins was restored in the heteroallelic diploid. Thus, each of the complementing rho1 mutation groups abolishes a distinct function of Rho1p, activation of Pkc1p kinase or 1,3-beta-glucan synthase activity.  相似文献   
64.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces apoptosis after cell cycle arrest at the G2 phase in primate cells. We have reported previously that C81, a carboxy-terminally truncated form of Vpr, interferes with cell proliferation and results in apoptosis without G2 arrest. Here, we investigated whether this property of Vpr and C81 could be exploited for use as a potential anticancer agent. First, we demonstrated that C81 induced G1 arrest and apoptosis in all tumor cells tested. In contrast, Vpr resulted in G2 arrest and apoptosis in HeLa and 293 T cells. Vpr also suppressed the damaged-DNA-specific binding protein 1 (DDB1) in HepG2 cells, thereby inducing apoptosis without G2 arrest. G2 arrest was restored when DDB1 was overexpressed in cells that also expressed Vpr. Surprisingly, C81 induced G2 arrest when DDB1 was overexpressed in HepG2 cells, but not in HeLa or 293 T cells. Thus, the induction of Vpr- and C81-mediated cell cycle arrest appears to depend on the cell type, whereas apoptosis was observed in all tumor cells tested. Overall, Vpr and C81 have potential as novel therapeutic agents for treatment of cancer.  相似文献   
65.
A pyrazole-sensitive carbonyl reductase from pig lung was purified to homogeneity by electrophoretic criteria. Chemical cross-linking study suggested that the native enzyme is a tetramer with a Mr of 103,000, consisting of apparent identical subunits of Mr 24,000. The enzyme reduced aliphatic and aromatic carbonyl compounds with NADPH as a preferable cofactor to NADH and catalyzed the oxidation of secondary alcohols and the aldehyde dismutation in the presence of NAD(P)+. Immunohistochemical study with the antibodies against the enzyme revealed that the enzyme was localized in the ciliated cells, nonciliated bronchiolar cells, Type II alveolar pneumocytes, and the epithelial cells of the ducts of the bronchial glands in the pig lung. In addition to the properties and distribution, the pig lung enzyme was immunochemically similar to the pulmonary enzymes in the guinea pig and mouse. However, the pig enzyme showed the following unusual features. (1) The enzyme exhibited an equatorial specificity in the reduction of 3-ketosteroids; the 4-pro-S hydrogen of NADPH was transferred to the carbonyl carbon atom of 5 alpha- and 5 beta-androstanes, and the respective reduced products were identified as 3 beta- and 3 alpha-hydroxysteroids. (2) Although the NADPH-linked reduction of carbonyl compounds apparently obeyed the Michaelis-Menten kinetics at pH 6.0, the double-reciprocal plots of the velocity vs concentrations of the carbonyl substrates were convex at pH higher than 6.5. The Hill coefficients and [S]0.5 values for the substrates decreased as the pH for reaction increased. The results suggest that the pig enzyme exhibits negative cooperativity with respect to the carbonyl substrates and that the hydrogen ion acts as an allosteric effector abolishing the negative interaction.  相似文献   
66.
67.
68.
Depth of dormancy of alpine and subalpine perennial forbs in autumn was investigated, which was judged by the number of days required for growth initiation at 24 °C. The depth of dormancy differed depending on Raunkiaer’s life-form and shoot habits. Chamaephytes with perennial shoot-axes showed shallower dormancy than hemicryptophytes with annual shoot-axes, and geophytes with annual shoot-axes showed the deepest dormancy. The results strongly suggest that the dormancy is more endogenously controlled in forbs less hardy to freezing stress. Potential growth ability of alpine herbaceous chamaephytes in autumn is an adaptive advantage, since they utilize the short vegetative period as long as possible. All of the species with annual shoot-axes had winter buds covered with scales. In plants with perennial shoot-axes, percentage of winter buds covered with scales increased with increasing depth of dormancy. The results indicate that the shoot apices are well protected by bud scales in forbs with a long endogeneous-dormant period.  相似文献   
69.
A cDNA encoding tomato fruit lectin was cloned from an unripe cherry-tomato fruit cDNA library. The isolated lectin cDNA contained an open reading frame encoding 365 amino acids, including peptides that were sequenced. The deduced sequence consisted of three distinct domains: (i) an N-terminal short extensin-like domain; (ii) a Cys-rich carbohydrate binding domain composed of four almost identical chitin-binding domains; (iii) an internal extensin-like domain of 101 residues containing 15 SerPro(4) motifs inserted between the first and second chitin-binding domains. The molecular weight of the lectin was 65,633 and that of the deglycosylated lectin was 32,948, as determined by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). This correlated with the estimated molecular weight of the deduced sequence. Recombinant tomato lectin expressed in Pichia pastoris possessed chitin-binding but not hemagglutinating activity. These findings confirmed that the cDNA encoded tomato lectin.  相似文献   
70.
Tange Y  Niwa O 《Genetics》2008,179(2):785-792
The core proteins of the spindle assembly checkpoint (SAC), Mads, Bubs, and Mps1, first identified in the budding yeast, are thought to be functionally and structurally conserved through evolution. We found that fission yeast Bub3 is dispensable for SAC, as bub3 null mutants blocked mitotic progression when spindle formation was disrupted. Consistently, the bub3 mutation only weakly affected the stability of minichromosome Ch16 compared with other SAC mutants. Fission yeast Rae1 has sequence homology with Bub3. The bub3 rae1 double mutant and rae1 single mutant did not have defective SAC, suggesting that these genes do not have overlapping roles for SAC. Observations of living cells revealed that the duration of the mitotic prometaphase/metaphase was longer in the bub3 mutant and was Mad2 dependent. Further, the bub3 mutant was defective in sister centromere association during metaphase. Together, these findings suggest that fission yeast Bub3 is required for normal spindle dynamics, but not for SAC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号