首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10589篇
  免费   748篇
  国内免费   5篇
  11342篇
  2022年   47篇
  2021年   108篇
  2020年   47篇
  2019年   106篇
  2018年   121篇
  2017年   113篇
  2016年   169篇
  2015年   266篇
  2014年   305篇
  2013年   598篇
  2012年   540篇
  2011年   575篇
  2010年   299篇
  2009年   303篇
  2008年   576篇
  2007年   511篇
  2006年   570篇
  2005年   564篇
  2004年   549篇
  2003年   515篇
  2002年   488篇
  2001年   327篇
  2000年   309篇
  1999年   276篇
  1998年   145篇
  1997年   120篇
  1996年   108篇
  1995年   103篇
  1994年   104篇
  1993年   108篇
  1992年   183篇
  1991年   188篇
  1990年   178篇
  1989年   175篇
  1988年   158篇
  1987年   140篇
  1986年   114篇
  1985年   112篇
  1984年   126篇
  1983年   100篇
  1982年   64篇
  1981年   56篇
  1980年   68篇
  1979年   98篇
  1978年   80篇
  1977年   80篇
  1976年   50篇
  1974年   49篇
  1973年   48篇
  1972年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
DCMU (N'-(3,4-dichlorophenyl)-N, N-dimethylurea) was testedfor effects on the metabolism of galactolipids in Chlorellaand chloroplasts isolated from higher plants. In Chlorella,DCMU affected galactolipid synthesis in the light more thanthat of other lipids, but it showed no effect on lipid synthesisin the dark. DCMU did not affect the turnover of galactolipidsin the light. In vitro studies using 14C-acetate or 14C-UDP-galactoseas a precursor showed that DCMU had no effect on the synthesisof gross lipid or galactolipids in chloroplasts isolated fromhigher plants. The significance of these observations are discussed. (Received September 21, 1974; )  相似文献   
72.
Currently, gapmer antisense oligonucleotide (ASO) therapeutics are under clinical development for the treatment of various diseases, including previously intractable human disorders; however, they have the potential to induce hepatotoxicity. Although several groups have reported the reduced hepatotoxicity of gapmer ASOs following chemical modifications of sugar residues or internucleotide linkages, only few studies have described nucleobase modifications to reduce hepatotoxicity. In this study, we introduced single or multiple combinations of 17 nucleobase derivatives, including four novel derivatives, into hepatotoxic locked nucleic acid gapmer ASOs and examined their effects on hepatotoxicity. The results demonstrated successful identification of chemical modifications that strongly reduced the hepatotoxicity of gapmer ASOs. This approach expands the ability to design gapmer ASOs with optimal therapeutic profiles.  相似文献   
73.
74.
The inducible tryptophanase (L-tryptophan indole-lyase (deaminating) EC 4.1.99.1) was crystallized in holoenzyme from the cell extract of Proteus rettgeri. The purification procedure included ammonium sulfate fractionation, heat treatment at 60 degrees C, DEAE-Sephadex and hydroxylapatite column chromatographies. Crystallization was performed by the addition of ammonium sulfate to the purified enzyme solution containing 20% (v/v) glycerol, 0.1 mM pyridoxal phosphate and 10 mM mercaptoethanol. The crystallized enzyme was yellow and showed absorption maxima at 340 and 420 nm. The crystalline holotryptophanase preparation was homogeneous by the criteria of ultracentrifugation and disc gel electrophoresis. The molecular weight of the enzyme was calculated as approx. 222 000. The amount of pyridoxal phosphate bound to the enzyme was determined to be 4 mol per mol of the enzyme. The enzyme is composed of four subunits of identical molecular size (mol. wt 55 000) and irreversibly dissociates into these subunits in the presence of a high concentration of sodium dodecylsulfate or guanidine hydrochloride. The NH2-terminal amino acid of the enzyme was identified as alanine.  相似文献   
75.
A mouse nanos (nanos1) gene was cloned and its function was examined by generating a gene-knockout mouse. The nanos1 gene encodes an RNA-binding protein, which contains a putative zinc-finger motif that exhibits similarity with other nanos-class genes in vertebrates and invertebrates. Although nanos1 is not detected in primordial germ cells, it is observed in seminiferous tubules of mature testis. Interestingly, maternally expressed nanos1 is observed in substantial amounts in oocytes, but the amount of maternal RNA is rapidly reduced after fertilization, and the transient zygotic nanos1 expression is observed in eight-cell embryos. At 12.5 days postcoitum, nanos1 is re-expressed in the central nervous system and the expression continues in the adult brain, in which the hippocampal formation is the predominant region. The nanos1 -deficient mice develop to term without any detectable abnormality and they are fertile. No significant neural defect is observed in terms of their behavior to date.  相似文献   
76.
Although diabetic nephropathy (DN) is a major cause of end-stage renal disease, the mechanism of dysfunction has not yet been clarified. We previously reported that in diabetes proinsulin-producing bone marrow-derived cells (BMDCs) fuse with hepatocytes and neurons. Fusion cells are polyploidy and produce tumor necrosis factor (TNF)-α, ultimately causing diabetic complications. In this study, we assessed whether the same mechanism is involved in DN. We performed bone marrow transplantation from male GFP-Tg mice to female C57BL/6J mice and produced diabetes by streptozotocin (STZ) or a high-fat diet. In diabetic kidneys, massive infiltration of BMDCs and tubulointerstitial injury were prominent. BMDCs and damaged tubular epithelial cells were positively stained with proinsulin and TNF-α. Cell fusion between BMDCs and renal tubules was confirmed by the presence of Y chromosome. Of tubular epithelial cells, 15.4% contain Y chromosomes in STZ-diabetic mice, 8.6% in HFD-diabetic mice, but only 1.5% in nondiabetic mice. Fusion cells primarily expressed TNF-α and caspase-3 in diabetic kidney. These in vivo findings were confirmed by in vitro coculture experiments between isolated renal tubular cells and BMDCs. It was concluded that cell fusion between BMDCs and renal tubular epithelial cells plays a crucial role in DN.  相似文献   
77.
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that interacts with cell-surface receptors, including CD44. Although HA usually exists as a high molecular mass polymer, HA of a much lower molecular mass that shows a variety of biological activities can be detected under certain pathological conditions, particularly in tumors. We previously reported that low molecular weight HAs (LMW-HAs) of a certain size range induce the proteolytic cleavage of CD44 from the surface of tumor cells and promote tumor cell migration in a CD44-dependent manner. Here, we show that MIA PaCa-2, a human pancreatic carcinoma cell line, secreted hyaluronidases abundantly and generated readily detectable levels of LMW-HAs ranging from approximately 10- to 40-mers. This occurred in the absence of any exogenous stimulation. The tumor-derived HA oligosaccharides were able to enhance CD44 cleavage and tumor cell motility. Inhibition of the CD44-HA interaction resulted in the complete abrogation of these cellular events. These results are consistent with the concept that tumor cells generate HA oligosaccha-rides that bind to tumor cell CD44 through the expression of their own constitutive hyaluronidases. This enhances their own CD44 cleavage and cell motility, which would subsequently promote tumor progression. Such an autocrine/paracrine-like process may represent a novel activation mechanism that would facilitate and promote the malignant potential of tumor cells.  相似文献   
78.
Two proteinase inhibitors, designated as inhibitors I and II, were purified from adzuki beans (Phaseolus angularis) by chromatographies on DEAE- and CM-cellulose, and gel filtration on a Sephadex G-100 column. Each inhibitor shows unique inhibitory activities. Inhibitor I was a powerful inhibitor of trypsin [EC 3.4.21.4], but essentially not of chymotrypsin ]EC 3.4.21.1]. On the other hand, inhibitor II inhibited chymotrypsin more strongly than trypsin. The molecular weights estimated from the enzyme inhibition were 3,750 and 9,700 for inhibitors I and II, respectively, assuming that the inhibitions were stoichiometric and in 1 : 1 molar ratio. The amino acid compositions of both inhibitors closely resemble those of low molecular weight inhibitors of other leguminous seeds: they contain large amounts of half-cystine, aspartic acid and serine, and little or no hydrophobic and aromatic amino acids. Inhibitor I lacks both tyrosine and tryptophan residues. The molecular weights were calculated to be 7,894 and 8,620 for inhibitors I and II, respectively. The reliability of these molecular weights was confirmed by the sedimentation equilibrium and 6 M guanidine gel filtration methods. On comparison with the values obtained from enzyme inhibition, it was concluded that inhibitor I and two trypsin inhibitory sites on the molecule, whereas inhibitor II had one chymotrypsin and one trypsin inhibitory sites on the molecule.  相似文献   
79.
80.
To investigate the active site structures of porcine pepsin and Rhizopus chinensis acid protease (RAP), spin label techniques were applied for these enzymes. Comparison of spin labeled porcine pepsin and RAP suggested that the active site cleft of porcine pepsin was narrower at the top, but wider at the bottom than that of RAP. Addition of pepstatin restricted the motion of the labeled nitroxide radicals. Under alkaline conditions, the enzymes changed their conformation discontinuously and irreversibly to open the active site clefts and to lose the binding ability for pepstatin. The denaturation points of both the enzymes were determined to be pH 6.2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号