首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1022篇
  免费   57篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   8篇
  2018年   9篇
  2017年   5篇
  2016年   15篇
  2015年   20篇
  2014年   22篇
  2013年   58篇
  2012年   53篇
  2011年   47篇
  2010年   32篇
  2009年   36篇
  2008年   47篇
  2007年   46篇
  2006年   55篇
  2005年   39篇
  2004年   56篇
  2003年   45篇
  2002年   36篇
  2001年   39篇
  2000年   36篇
  1999年   34篇
  1998年   13篇
  1997年   7篇
  1996年   9篇
  1995年   13篇
  1994年   13篇
  1993年   16篇
  1992年   31篇
  1991年   35篇
  1990年   30篇
  1989年   25篇
  1988年   11篇
  1987年   19篇
  1986年   12篇
  1985年   15篇
  1984年   8篇
  1983年   6篇
  1981年   3篇
  1979年   5篇
  1977年   4篇
  1976年   4篇
  1975年   9篇
  1974年   5篇
  1971年   6篇
  1970年   3篇
  1968年   5篇
  1967年   4篇
排序方式: 共有1079条查询结果,搜索用时 109 毫秒
111.
Vertebrate photoreceptor outer segment (OS) morphogenesis requires peripherin/rds (P/rds). We have characterized this protein's C-terminus and present evidence that suggests it is intrinsically disordered. We propose that structural flexibility may underlie the multifunctionality proposed for this domain previously. The extremely short C-termini present in other tetraspanin family members suggest that intrinsic disorder may also play a role for those proteins.  相似文献   
112.
113.
Although photosystem I (PSI) cyclic electron transport is essential for plants, our knowledge of the route taken by electrons is very limited. To assess whether ferredoxin (Fd) donates electrons directly to plastoquinone (PQ) or via a Q-cycle in the cytochrome (cyt) b(6)f complex in PSI cyclic electron transport, we characterized the activity of PSI cyclic electron transport in an Arabidopsis mutant, pgr1 (proton gradient regulation). In pgr1, Q-cycle activity was hypersensitive to acidification of the thylakoid lumen because of an amino acid alteration in the Rieske subunit of the cyt b(6)f complex, resulting in a conditional defect in Q-cycle activity. In vitro assays using ruptured chloroplasts did not show any difference in the activity of PGR5-dependent PQ reduction by Fd, which functions in PSI cyclic electron transport in vivo. In contrast to the pgr5 defect, the pgr1 defect did not show any synergistic effect on the quantum yield of photosystem II in crr2-2, a mutant in which NDH (NAD(P)H dehydrogenase) activity was impaired. Furthermore, the simultaneous determination of the quantum yields of both photosystems indicated that the ratio of linear and PSI cyclic electron transport was not significantly affected in pgr1. All the results indicated that the pgr1 mutation did not affect PGR5-dependent PQ reduction by Fd. The phenotypic differences between pgr1 and pgr5 indicate that maintenance of the proper balance of linear and PSI cyclic electron transport is essential for preventing over-reduction of the stroma.  相似文献   
114.
To investigate structural requirement of helical apolipoprotein to phosphorylate and stabilize ATP-binding cassette transporter A1 (ABCA1), synthetic peptides (Remaley, A. T., Thomas, F., Stonik, J. A., Demosky, S. J., Bark, S. E., Neufeld, E. B., Bocharov, A. V., Vishnyakova, T. G., Patterson, A. P., Eggerman, T. L., Santamarina-Fojo, S., and Brewer, H. B. (2003) J. Lipid Res. 44, 828-836) were examined for these activities. L37pA, an L amino acid peptide that contains two class-A amphiphilic helices, and D37pA, the same peptide with all D amino acids, both removed cholesterol and phospholipid from differentiated THP-1 cells more than apolipoproteins (apos) A-I, A-II, and E. Both peptides also mediated lipid release from human fibroblasts WI-38 similar to apoA-I. L2D37pA, an L-peptide whose valine and tyrosine were replaced with D amino acids also promoted lipid release from WI-38 but less so with THP-1, whereas L3D37pA, in which alanine, lysine, and asparatic acid were replaced with D amino acids was ineffective in lipid release for both cell lines. ABCA1 protein in THP-1 and WT-38 was stabilized against proteolytic degradation by apoA-I, apoA-II, and apoE and by all the peptides tested except for L3D37pA, and ABCA1 phosphorylation closely correlated with its stabilization. The analysis of the relationship among these parameters indicated that removal of phospholipid triggers signals for phosphorylation and stabilization of ABCA1. We thus concluded that an amphiphilic helical motif is the minimum structural requirement for a protein to stabilize ABCA1 against proteolytic degradation.  相似文献   
115.
French DL  Arakawa T  Li T 《Biopolymers》2004,73(4):524-531
Spray drying is a way to generate protein solids (powders), which is also true for lyophilization. Sugars are used to protect proteins from conformational changes and chemical degradations arising from drying processes and storage conditions such as the humidity. The influence of trehalose and humidity on the conformation and hydration of spray-dried recombinant human granolucyte colony stimulating factor (rhG-CSF) and recombinant consensus interferon-alpha (rConIFN) was investigated using Fourier transform IR spectroscopy. The spectral analysis of spray-dried powders in the amide I region demonstrated that trehalose stabilized the alpha-helical conformation of both rhG-CSF and rConIFN proteins. Exposure of the pure protein powders to 33% relative humidity (RH) resulted in the formation of beta sheets and loss of turns but no change in alpha-helical structure. Trehalose reduced the magnitude of the changes in beta sheets and turns. Exposure of the pure protein powders to 75% RH resulted in the loss of alpha-helical conformation with a corresponding increase in beta structures (beta sheets and turns). Trehalose did not protect proteins from the loss of alpha-helical structures, but it reduced the formation of antiparallel beta sheets. Hydrogen-deuterium exchange (H-D exchange) was used to further characterize these hydration-induced conformational changes. At 33% RH the percent exchange of the protein decreased with increasing trehalose content, indicating a greater protection of the protein from H-D exchange by a higher concentration of trehalose. Such protection correlates with decreased conformational changes of the protein by trehalose at this humidity. At 75% RH the degree of H-D exchange of the protein was insensitive to the powder composition in all powders. Surprisingly, the H-D exchange of trehalose was low at about 20-25%, which was nearly independent of the protein/trehalose ratio and humidity, indicating that the exchangeable protons on trehalose molecules are highly protected in protein-containing powders. The observed protein hydration is related to the effect of trehalose on the conformational changes of the protein under humidity.  相似文献   
116.
This study was carried out to investigate the structural perturbation of the protein's local structure by the denaturants under non-denaturing conditions. Crystal structure of CutA from an archaeon Pyrococcus horikosii (PhoCutA), a heavy-metal binding protein, was determined at 1.6-angstroms resolution in the presence of 3 M guanidine HCl (GdnHCl). Native PhoCutA has a large number of short intramolecular hydrogen bonds and salt bridges on the protein surface, of which greater than 90% of hydrogen bonds and all salt bridges were retained in 3 M GdnHCl. Hydrogen bonds that disappeared in the GdnHCl crystal structure were mainly located on the protein surface, especially around the structurally perturbed loop, suggesting interactions between peptide groups and GdnHCl. Only a few GdnH+ ions were observed in the crystal structure, although none at the surface, of the protein. Two GdnH+ ions were observed in the center of the trimeric structure, replacing water molecules, and were hydrogen bonded with Asp84 and Asp86 of each chain. The exterior loop from Tyr39 to Lys44, including Trp40-Trp41, was perturbed structurally. Decreases in temperature factors were observed in beta strand 5 and the N terminus of helix 3. These results suggest the specific bindings of GdnH+ with some acidic residues and the non-specific bindings around Trp residues and peptide groups on the protein surface and that binding of GdnHCl to the native protein is limited, resulting in local structural perturbation.  相似文献   
117.
Entomopathogens and other econutritional fungi belonging to Clavicipitaceae were phylogenetically analyzed on the basis of the 18S rRNA gene and mating-type genes (MAT1-1-1 and MAT1-2-1). The phylogenies of the mating-type genes yielded better resolutions than that of 18S rRNA gene. Entomopathogens (Cordyceps bassiana, Cordyceps brongniartii, Cordyceps militaris, Cordyceps sinclairii, Cordyceps takaomontana, Isaria cateniannulata, Isaria farinosa, Isaria fumosorosea, Isaria javanica, Lecanicillium muscarium and Torrubiella flava) were considered as a phylogenetically defined group, and were closely related to mycopathogens (Lecanicillium psalliotae and Verticillium fungicola). They located at more descendant positions in the mating-type trees than other fungi, and lacked the mating-type gene MAT1-1-3. The deletion of MAT1-1-3 was supposed to have occurred once in Clavicipitaceae, and a good indication for the evolution of Clavicipitaceae. Other entomopathogens (Cordyceps cylindrica, Cordyceps subsessilis, Metarhizium anisopliae and Nomuraea rileyi) and pathogens of plants, nematodes and slime molds, were relatively related to each other, and possessed MAT1-1-3, but were supposed to be heterogeneous. Root-associated fungi did not form any clade with other species.  相似文献   
118.
We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH–GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20°C for 2 h and then released by warming up to 37°C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH–GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.  相似文献   
119.
Acid snow might be an environmental stress factor for wintering plants since acid precipitates are locally concentrated in snow and the period in which ice crystals are in contact with shoots might be longer than that of acid precipitates in rain. In this study, 'equilibrium' and 'prolonged' freezing tests with sulfuric acid, which simulate situations of temperature depression and chronic freezing at a subzero temperature with acid precipitate as acid snow stress, respectively, were carried out using leaf segments of cold-acclimated winter wheat. When leaf segments were frozen in the presence of sulfuric acid solution (pH 4.0, 3.0 or 2.0) by equilibrium freezing with ice seeding, the survival rate of leaf samples treated with sulfuric acid solution of pH 2.0 decreased markedly. Leaf samples after supercooling to -4 and -8 degrees C in the presence of sulfuric acid solution (pH 2.0) without ice seeding were less damaged. When leaf samples were subjected to prolonged freezing at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0), the survival rates of leaf samples exposed to sulfuric acid decreased more than those of leaf samples treated with water. On the other hand, leaf samples were less damaged by prolonged supercooling at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0). The results suggest that an acid condition (pH 2.0) in the process of extracellular freezing and/or thawing promotes freezing injury of wheat leaves.  相似文献   
120.
Hepatic P450 monooxygenase activities, assessed by measurement of 7-alkoxycoumarin O-dealkylase (ACD) activities, show obvious daily fluctuations in male rats with high values during the dark period and low values during the light period. We have already confirmed that the ACD activities are controlled by the suprachiasmatic nucleus (SCN), which is well known as the oscillator of circadian rhythm. Recently, it is reported that circadian oscillators exist not only in the SCN but also in peripheral organs. To date, it is unclear which circadian oscillators predominantly drive the daily fluctuations of hepatic ACD activities. To address this question, we examined the effects of restricted feeding, which uncouples the circadian oscillators in the liver from the central pacemaker in the SCN, on the daily fluctuations in hepatic ACD activities in male rats. Here we show that restricted feeding inverts the oscillation phase of the daily fluctuations in hepatic ACD activities. Regarding the hepatic P450 content, there were no fluctuations between the light and dark periods under ad libitum and restricted feeding conditions. Therefore, it is considered that the daily fluctuations in hepatic ACD activities are predominantly driven by the circadian factors in peripheral organs rather than by the oscillator in the SCN directly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号